Sunday, November 17, 2024
Google search engine
HomeLanguagesHow to count the frequency of unique values in NumPy array?

How to count the frequency of unique values in NumPy array?

Let’s see How to count the frequency of unique values in NumPy array. Python’s numpy library provides a numpy.unique() function to find the unique elements and it’s corresponding frequency in a numpy array.

Syntax: numpy.unique(arr, return_counts=False)

Return: Sorted unique elements of an array with their corresponding frequency counts NumPy array.

Now, Let’s see examples:

Example 1:

Python3




# import library
import numpy as np
 
ini_array = np.array([10, 20, 5,
                      10, 8, 20,
                      8, 9])
 
# Get a tuple of unique values
# and their frequency in
# numpy array
unique, frequency = np.unique(ini_array,
                              return_counts = True)
# print unique values array
print("Unique Values:",
      unique)
 
# print frequency array
print("Frequency Values:",
      frequency)


Output:

Unique Values: [ 5  8  9 10 20]
Frequency Values: [1 2 1 2 2]

Example 2:

Python3




# import library
import numpy as np
 
# create a 1d-array
ini_array = np.array([10, 20, 5,
                    10, 8, 20,
                    8, 9])
 
# Get a tuple of unique values
# and their frequency
# in numpy array
unique, frequency = np.unique(ini_array,
                              return_counts = True)
 
# convert both into one numpy array
count = np.asarray((unique, frequency ))
 
print("The values and their frequency are:\n",
     count)


Output:

The values and their frequency are:
[[ 5  8  9 10 20]
[ 1  2  1  2  2]]

Example 3:

Python3




# import library
import numpy as np
 
# create a 1d-array
ini_array = np.array([10, 20, 5,
                      10, 8, 20,
                      8, 9])
 
# Get a tuple of unique values
# and their frequency in
# numpy array
unique, frequency = np.unique(ini_array,
                              return_counts = True)
 
# convert both into one numpy array
# and then transpose it
count = np.asarray((unique,frequency )).T
 
print("The values and their frequency are in transpose form:\n",
     count)


Output:

The values and their frequency are in transpose form:
[[ 5  1]
[ 8  2]
[ 9  1]
[10  2]
[20  2]]

RELATED ARTICLES

Most Popular

Recent Comments