In this article, we’ll look at different methods to convert an integer into a string in a Pandas dataframe. In Pandas, there are different functions that we can use to achieve this task :
- map(str)
- astype(str)
- apply(str)
- applymap(str)
Example 1 : In this example, we’ll convert each value of a column of integers to string using the map(str) function.
Python3
# importing pandas as pd import pandas as pd # creating a dictionary of integers dict = { 'Integers' : [ 10 , 50 , 100 , 350 , 700 ]} # creating dataframe from dictionary df = pd.DataFrame.from_dict( dict ) print (df) print (df.dtypes) print ( '\n' ) # converting each value of column to a string df[ 'Integers' ] = df[ 'Integers' ]. map ( str ) print (df) print (df.dtypes) |
Output :
We can see in the above output that before the datatype was int64 and after the conversion to a string, the datatype is an object which represents a string. Example 2 : In this example, we’ll convert each value of a column of integers to string using the astype(str) function.
Python3
# importing pandas as pd import pandas as pd # creating a dictionary of integers dict = { 'Integers' : [ 10 , 50 , 100 , 350 , 700 ]} # creating dataframe from dictionary df = pd.DataFrame.from_dict( dict ) print (df) print (df.dtypes) print ( '\n' ) # converting each value of column to a string df[ 'Integers' ] = df[ 'Integers' ].astype( str ) print (df) print (df.dtypes) |
Output :
We can see in the above output that before the datatype was int64 and after the conversion to a string, the datatype is an object which represents a string. Example 3 : In this example, we’ll convert each value of a column of integers to string using the apply(str) function.
Python3
# importing pandas as pd import pandas as pd # creating a dictionary of integers dict = { 'Integers' : [ 10 , 50 , 100 , 350 , 700 ]} # creating dataframe from dictionary df = pd.DataFrame.from_dict( dict ) print (df) print (df.dtypes) print ( '\n' ) # converting each value of column to a string df[ 'Integers' ] = df[ 'Integers' ]. apply ( str ) print (df) print (df.dtypes) |
Output :
We can see in the above output that before the datatype was int64 and after the conversion to a string, the datatype is an object which represents a string. Example 4 : All the methods we saw above, convert a single column from an integer to a string. But we can also convert the whole dataframe into a string using the applymap(str) method.
Python3
# importing pandas as pd import pandas as pd # creating a dictionary of integers dict = { 'Roll No.' : [ 1 , 2 , 3 , 4 , 5 ], 'Marks' :[ 79 , 85 , 91 , 81 , 95 ]} # creating dataframe from dictionary df = pd.DataFrame.from_dict( dict ) print (df) print (df.dtypes) print ( '\n' ) # converting each value of column to a string df = df.applymap( str ) print (df) print (df.dtypes) |
Output :
We can see in the above output that before the datatype was int64 and after the conversion to a string, the datatype is an object which represents a string.