Friday, January 10, 2025
Google search engine
HomeLanguagesHow to convert index in a column of the Pandas dataframe?

How to convert index in a column of the Pandas dataframe?

Each row in a dataframe (i.e level=0) has an index value i.e value from 0 to n-1 index location and there are many ways to convert these index values into a column in a pandas dataframe. First, let’s create a Pandas dataframe. Here, we will create a Pandas dataframe regarding student’s marks in a particular subject with columns roll number, name, score, grade, and subject.

Example:

Python3




# importing the pandas library as pd
import pandas as pd    
 
 
# Creating the dataframe Ab
AB = pd.DataFrame({'Roll Number': ['9917102206', '9917102250',
                                   '9917102203', '9917102204',
                                   '9917102231'],
                   'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
                            'PRAKHAR','ASHISH'],
                   'Score': [99, 98, 50, 45,97],
                   'Grade': ['A+', 'A+', 'C+', 'C','A'],
                   'Subject': ['Operating Systems', 'Operating Systems',
                               'Operating Systems', 'Operating Systems',
                               'Operating Systems']})
   
# Printing the dataframe
AB


 

 

Output:

 

DATA FRAME CREATED

 

Method 1: Creating a new Index column

 

Here we will learn to create a new column in the existing dataframe as an index and add index value of each row(level=0) to that column.

 

Python3




# importing the pandas library as pd
import pandas as pd    
 
 
# Creating the dataframe Ab
AB = pd.DataFrame({'Roll Number': ['9917102206', '9917102250',
                                   '9917102203', '9917102204',
                                   '9917102231'],
                   'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
                            'PRAKHAR','ASHISH'],
                   'Score': [99, 98, 50, 45,97],
                   'Grade': ['A+', 'A+', 'C+', 'C','A'],
                   'Subject': ['Operating Systems', 'Operating Systems',
                               'Operating Systems', 'Operating Systems',
                               'Operating Systems']})
   
     
# Adding a new index column to existing
# data frame and passing index value  
AB['index'] = AB.index
 
# Printing the dataframe
AB


Output:

Here, we added a new column “index” to “AB” dataframe using the index value of each row in the dataframe as an argument value and converted index to the column.

Method 2: Using reset_index() method and to_string() method

Here we will sue reset_index() method to convert the index to a column along with inplace argument to reflect the change continuously and we will use the to_string() method for hiding the index value shown by default whenever a dataframe is printed.

Python3




#CREATING A DATAFRAME FOR STUDENTS PORTFOLIO
 
# importing the pandas library as pd
import pandas as pd    
# Creating the dataframe Ab
AB = pd.DataFrame({'Roll Number': ['9917102206', '9917102250', '9917102203', '9917102204','9917102231'],
                   'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA', 'PRAKHAR','ASHISH'],
                   'Score': [99, 98, 50, 45,97],
                   'Grade': ['A+', 'A+', 'C+', 'C','A'],
                   'Subject': ['Operating Systems', 'Operating Systems', 'Operating Systems', 'Operating Systems','Operating Systems']})
   
     
# importing the pandas library as pd
import pandas as pd    
 
 
# Creating the dataframe Ab
AB = pd.DataFrame({'Roll Number': ['9917102206', '9917102250',
                                   '9917102203', '9917102204',
                                   '9917102231'],
                   'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
                            'PRAKHAR','ASHISH'],
                   'Score': [99, 98, 50, 45,97],
                   'Grade': ['A+', 'A+', 'C+', 'C','A'],
                   'Subject': ['Operating Systems', 'Operating Systems',
                               'Operating Systems', 'Operating Systems',
                               'Operating Systems']})
   
     
# USING RESET_INDEX METHOD
# Adding a new index column to AB dataframe
AB.reset_index(level=0, inplace=True)
 
# HIDING THE DEFAULT INDEX VALUES AND
# PRINTING DATAFRAME
print( AB.to_string(index=False))


Output:

USING RESET_INDEX METHOD

Here we applied reset_index method to given data frame and make the default index value (equal to 0) by passing it as an argument to to_string method.

Method 3: Using multi_index

Here We will learn to create columns from a dataframe having multi-index.

Example 1: For multi-index to column

Python3




# importing the pandas library as pd
import pandas as pd    
 
# ADDING MULTI INDEX TO DATA FRAME
new_index = pd.MultiIndex.from_tuples([('E4','ECE'),
                                       ('E5','ECE'),
                                       ('E6','ECE'),
                                       ('E7','ECE'),
                                       ('E8','ECE')],
                                       names=['BATCH','BRANCH'])
# Creating the dataframe AB
data =({'Roll Number': ['9917102206', '9917102250',
                        '9917102203', '9917102204',
                        '9917102231'],
                   'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
                            'PRAKHAR','ASHISH'],
                   'Score': [99, 98, 50, 45,97],
                   'Grade': ['A+', 'A+', 'C+', 'C','A'],
                   'Subject': ['Operating Systems', 'Operating Systems',
                               'Operating Systems', 'Operating Systems',
                               'Operating Systems']})
   
# COMBING DATA FRAME AND MULTI INDEX
# VALUES AND FORMING DATA FRAME
AB = pd.DataFrame(data, columns = ['Roll Number','Name','Score','Grade','Subject'],
                  index=new_index)
 
# MAKING MULTI INDEX NOW A PART OF COLUMN
# OF DATAFRAME
AB.reset_index(inplace=True)
 
AB


 

 

Output:

 

 

Example 2: For making specific column from multi-index as a column of dataframe

 

Python3




# importing the pandas library as pd
import pandas as pd    
 
# ADDING MULTI INDEX TO DATA FRAME
new_index = pd.MultiIndex.from_tuples([('E4','ECE'),
                                       ('E5','ECE'),
                                       ('E6','ECE'),
                                       ('E7','ECE'),
                                       ('E8','ECE')],
                                       names=['BATCH','BRANCH'])
# Creating the dataframe AB
data =({'Roll Number': ['9917102206', '9917102250',
                        '9917102203', '9917102204',
                        '9917102231'],
                   'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
                            'PRAKHAR','ASHISH'],
                   'Score': [99, 98, 50, 45,97],
                   'Grade': ['A+', 'A+', 'C+', 'C','A'],
                   'Subject': ['Operating Systems', 'Operating Systems',
                               'Operating Systems', 'Operating Systems',
                               'Operating Systems']})
   
# COMBING DATA FRAME AND MULTI INDEX
# VALUES AND FORMING DATA FRAME
AB = pd.DataFrame(data, columns = ['Roll Number','Name','Score','Grade','Subject'],
                  index=new_index)
 
# MAKING SPECIFIC COLUMN OF MULTI INDEX
# NOW A PART OF COLUMN OF DATAFRAME
AB.reset_index(inplace=True,level=['BATCH'])
 
# BATCH INDEX IS NOW A COLUMN OF DATAFRAME
AB


Output:

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments