Friday, October 17, 2025
HomeLanguagesHow to Compute the Heaviside Step Function for Each Element in Input...

How to Compute the Heaviside Step Function for Each Element in Input in PyTorch?

In this article, we are going to cover how to compute the Heaviside step function for each element in input in PyTorch using Python. We can compute this with the help of torch.heaviside() method.

torch.heaviside() method

The torch.heaviside() method is used to compute the Heaviside step function for each element. This method accepts input and values as parameters. The parameters type should be tensor only. If the input < 0 then it return 0. whereas, if input > 0 then this method 1 respectively. If the input=0 then this method returns a value the same as the values (one of the parameters). Below is the syntax of the given method:

Syntax: torch.heaviside(input, value)

Parameters:

  • input (Tensor): This is our input tensor.
  • value (Tensor): This value is a tensor and it’s where input is 0.

Return: This method returns the computed heaviside step function.

Example 1

In this example, we compute the Heaviside step function for each element in the given 1D tensor.

Python3




# Import the required libraries
import torch
  
# define two tensors
input_tens = torch.tensor([0.3, -1.2, 0, 2.0, 0.9])
values_tens = torch.tensor([0.2])
  
# display above defined tensors
print(" The Input Tensor: ", input_tens)
print(" The Values Tensor: ", values_tens)
  
# compute heaviside step function for each 
# element
hea = torch.heaviside(input_tens, values_tens)
  
# Display Output
print(" computed Heaviside step function for each element: \n", hea)


Output:

 

Example 2

In the following example, we compute the Heaviside step function for each element in the given 2D tensor.

Python3




# Import the required libraries
import torch
  
# define a 2D tensor for input
input_tens = input = torch.tensor([[-2.9, 0.0, -1.6, 2.5],
                                   [0.0, -1.2, 0.0,  0.0],
                                   [-2.3, 0.0, 1.8, -1.3],
                                   [0.0, 2.2, -1.3, 0.0]])
  
# define a tensor for values
values_tens = torch.tensor([0.2, 0.3, 0.4, 0.5])
  
# display above defined tensors
print("\n\n The Input Tensor: \n", input_tens)
print("\n The Values Tensor: \n", values_tens)
  
# compute heaviside step function for each 
# element
hea = torch.heaviside(input_tens, values_tens)
  
# Display Output
print("\n computed Heaviside step function for each element: \n", hea)


Output:

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS