Friday, October 24, 2025
HomeLanguagesHow to compute the eigenvalues and eigenvectors of a square matrix in...

How to compute the eigenvalues and eigenvectors of a square matrix in PyTorch?

In this article, we are going to discuss how to compute the eigenvalues and eigenvectors of a square matrix in PyTorch.

Compute the eigenvalues and eigenvectors of a square matrix in PyTorch

torch.linalg.eig() method computes the eigenvalue decomposition of a square matrix or a batch of matrices. The decomposition exists if the input matrix is diagonalizable. This method also supports the input of float, double, cfloat, and cdouble data types. It will return a named tuple (eigenvalues, eigenvectors). The eigenvalues and eigenvectors are always complex-valued and the eigenvectors are given by columns of eigenvectors. Below is the syntax of torch.linalg.eig() method.

Syntax: torch.linalg.eig(mat)

Parameter:

  • mat (Tensor): square matrix or a batch of matrices.

Return: It will return a named tuple (eigenvalues, eigenvectors).

Example 1:

In this example, we see how to compute the eigenvalues and eigenvectors of a square matrix.

Python3




# import the required library
import torch
  
# define a 3x3 square matrix
mat = torch.tensor([[-0.3371, -0.2975, 1.8739],
                    [1.4078, 1.6856, 0.3799],
                    [1.9002, -0.4428, 1.5552]])
  
# print the above created matrix
print("\n Matrix: \n", mat)
  
# compute the eigenvalues and eigenvectors
eigenvalues, eigenvectors = torch.linalg.eig(mat)
  
# print output
print("\n Eigenvalues: \n", eigenvalues)
print("\n Eigenvectors: \n", eigenvectors)


Output:

EigenValues and EigenVectors

EigenValues and EigenVectors

Example 2:

In this example, we see how to compute the eigenvalues and eigenvectors of a batch of matrices.

Python3




# import the required library
import torch
  
# define a batch of matrices
mat = torch.tensor([[[-0.1345, -0.7437, 1.2377],
                     [0.9337, 1.6473, 0.4346],
                     [-1.6345, 0.9344, -0.2456]],
                    [[1.3343, -1.3456, 0.7373],
                     [1.4334, 0.2473, 1.1333],
                     [-1.5341, 1.5348, -1.4567]]])
  
# print the above batch of matrices
print("\n Matrix: \n", mat)
  
# compute the eigenvalues and eigenvectors
eigenvalues, eigenvectors = torch.linalg.eig(mat)
  
# print output
print("\n Eigenvalues: \n", eigenvalues)
print("\n Eigenvectors: \n", eigenvectors)


Output:

EigenValues and EigenVectors

EigenValues and EigenVectors

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS