Friday, August 29, 2025
HomeLanguagesHow to compute natural, base 10, and base 2 logarithm for all...

How to compute natural, base 10, and base 2 logarithm for all elements in a given array using NumPy?

numpy.log( ) function in Python returns natural logarithmic of the input where the natural logarithm of a number is its logarithm to the base of the mathematical constant e, where e is an irrational and transcendental number approximately equal to 2.718281828459. 

Syntax: numpy.log(arr,out)

Parameters:
arr : Input Value. Can be scalar and numpy ndim array as well.
out : A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned.
shape must be same as input array.

If a scalar is provided to the function as input then the function is applied on the scalar and a scalar is returned. 

Example: if 3 was given as input then log(3) will be returned as output.

Python3




import numpy
  
n = 3
print("natural logarithm of {} is".format(n), numpy.log(n))
  
n = 5
print("natural logarithm of {} is".format(n), numpy.log(n))


Output:

natural logarithm of 3 is 1.0986122886681098
natural logarithm of 5 is 1.6094379124341003

If input is an n-dim array then function is applied element-wise. ex- np.log([1,2,3]) is equivalent to [np.log(1),np.log(2),np.log(3)]

Example:

Python3




import numpy
  
  
arr = np.array([6, 2, 3, 4, 5])
print(numpy.log(arr))


Output:

[1.79175947 0.69314718 1.09861229 1.38629436 1.60943791]

Functions similar to numpy.log() :

  • numpy.log2(): To calculate base 2 logarithms. Parameters of this functions are same as numpy.log(). It is also called the binary logarithm. Base 2 logarithm of y is the power to which the number 2 must be raised to obtain the value y.
  • numpy.log10(): To calculate base 10 logarithms. Parameters are the same as numpy.log(). Base 10 logarithm of y is the power to which the number 10 must be raised to obtain the value y.

Example:

Python




# importing numpy
import numpy
  
# natural logarithm
print("natural logarithm -")
arr = numpy.array([6, 2, 3, 4, 5])
print(numpy.log(arr))
  
# Base 2 logarithm
print("Base 2 logarithm -")
arr = numpy.array([6, 2, 3, 4, 5])
print(numpy.log2(arr))
  
# Base 10 logarithm
print("Base 10 logarithm -")
arr = numpy.array([6, 2, 3, 4, 5])
print(numpy.log10(arr))


Output:

natural logarithm -
[1.79175947 0.69314718 1.09861229 1.38629436 1.60943791]
Base 2 logarithm -
[2.5849625  1.         1.5849625  2.         2.32192809]
Base 10 logarithm -
[0.77815125 0.30103    0.47712125 0.60205999 0.69897   ]
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32249 POSTS0 COMMENTS
Milvus
80 POSTS0 COMMENTS
Nango Kala
6617 POSTS0 COMMENTS
Nicole Veronica
11791 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11838 POSTS0 COMMENTS
Shaida Kate Naidoo
6731 POSTS0 COMMENTS
Ted Musemwa
7012 POSTS0 COMMENTS
Thapelo Manthata
6689 POSTS0 COMMENTS
Umr Jansen
6701 POSTS0 COMMENTS