Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIHighest and Smallest power of K less than and greater than equal...

Highest and Smallest power of K less than and greater than equal to N respectively

Given positive integers N and K, the task is to find the highest and smallest power of K greater than equal to and less than equal to N respectively.

Examples: 

Input: N = 3, K = 2 
Output: 2 4 
Highest power of 2 less than 3 = 2 
Smallest power of 2 greater than 3 = 4

Input: N = 6, K = 3 
Output: 3 9 
Highest power of 3 less than 6 = 3 
Smallest power of 3 greater than 6 = 9  

Approach:  

  1. Compute the log of N in base K (logK N) to get the exponential power such that K raised to this exponent is the Highest power of K less than equal to N.
  2. For the Smallest power of K less than equal to N, find the next power of K computed from the last step

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the highest power of k less than or
// equal to n
int prevPowerofK(int n, int k)
{
    int p = (int)(log(n) / log(k));
    return (int)pow(k, p);
}
 
// Function to return the smallest power of k greater than
// or equal to n
int nextPowerOfK(int n, int k)
{
    return prevPowerofK(n, k) * k;
}
 
// Function to print the result
void printResult(int n, int k)
{
    cout << prevPowerofK(n, k) << " " << nextPowerOfK(n, k) << endl;
}
 
// Driver code
int main()
{
    int n = 25, k = 3;
    printResult(n, k);
    return 0;
}
 
// This code is contributed by Sania Kumari Gupta


C




// C implementation of the approach
#include <math.h>
#include <stdio.h>
 
// Function to return the highest power of k less than or
// equal to n
int prevPowerofK(int n, int k)
{
    int p = (int)(log(n) / log(k));
    return (int)pow(k, p);
}
 
// Function to return the smallest power of k greater than
// or equal to n
int nextPowerOfK(int n, int k)
{
    return prevPowerofK(n, k) * k;
}
 
// Function to print the result
void printResult(int n, int k)
{
    printf("%d %d\n", prevPowerofK(n, k), nextPowerOfK(n, k));
}
 
// Driver code
int main()
{
    int n = 25, k = 3;
    printResult(n, k);
    return 0;
}
 
// This code is contributed by Sania Kumari Gupta


Java




// Java implementation of the approach
import java.io.*;
 
class GFG{
 
// Function to return the highest power
// of k less than or equal to n
static int prevPowerofK(int n, int k)
{
    int p = (int)(Math.log(n) / Math.log(k));
    return (int) Math.pow(k, p);
}
 
// Function to return the smallest power
// of k greater than or equal to n
static int nextPowerOfK(int n, int k)
{
    return prevPowerofK(n, k) * k;
}
 
// Function to print the result
static void printResult(int n, int k)
{
    System.out.println(prevPowerofK(n, k) + " " +
                       nextPowerOfK(n, k));
}
 
// Driver Code
public static void main (String args[])
{
    int n = 25, k = 3;
    printResult(n, k);
}
}
 
// This code is contributed by shivanisinghss2110


Python3




# Python3 implementation of the approach
import math
 
# Function to return the highest power
# of k less than or equal to n
def prevPowerofK(n, k):
 
    p = int(math.log(n) / math.log(k))
    return int(math.pow(k, p))
 
# Function to return the smallest power
# of k greater than or equal to n
def nextPowerOfK(n, k):
 
    return prevPowerofK(n, k) * k
 
# Function to print the result
def printResult(n, k):
 
    print(prevPowerofK(n, k), nextPowerOfK(n, k))
 
# Driver code
n = 6
k = 3
 
printResult(n, k)
 
# This code is contributed by divyamohan123


C#




// C# implementation of the approach
using System;
class GFG{
 
// Function to return the highest power
// of k less than or equal to n
static int prevPowerofK(int n, int k)
{
    int p = (int)(Math.Log(n) / Math.Log(k));
    return (int) Math.Pow(k, p);
}
 
// Function to return the smallest power
// of k greater than or equal to n
static int nextPowerOfK(int n, int k)
{
    return prevPowerofK(n, k) * k;
}
 
// Function to print the result
static void printResult(int n, int k)
{
    Console.WriteLine(prevPowerofK(n, k) + " " +
                      nextPowerOfK(n, k));
}
 
// Driver Code
public static void Main(String []args)
{
    int n = 25, k = 3;
    printResult(n, k);
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
 
 
// Javascript implementation of the approach
 
// Function to return the highest power
// of k less than or equal to n
function prevPowerofK(n, k)
{
    var p = parseInt(Math.log(n) / Math.log(k));
    return parseInt(Math.pow(k, p));
}
 
// Function to return the smallest power
// of k greater than or equal to n
function nextPowerOfK(n, k)
{
    return prevPowerofK(n, k) * k;
}
 
// Function to print the result
function printResult(n, k)
{
    document.write(prevPowerofK(n, k)
         + " " + nextPowerOfK(n, k) + "<br>");
          
}
 
// Driver code
var n = 25, k = 3;
printResult(n, k);
 
 
</script>


Output: 

9 27

 

Time Complexity: O(logkn), as inbuilt pow function will cost O (logkn) time.

Auxiliary Space: O(1), as we are not using any extra space.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments