Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIHexacontatetragon numbers

Hexacontatetragon numbers

Given a number N, the task is to find Nth Hexacontatetragon number.
 

An Hexacontatetragon number is a class of figurate numbers. It has a 64-sided polygon called Hexacontatetragon. The N-th Hexacontatetragon number count’s the 64 number of dots and all other dots are surrounding with a common sharing corner and make a pattern. The first few Hexacontatetragonol numbers are 1, 64, 189, 376, 625, 936, … 
 

Examples: 
 

Input: N = 2 
Output: 64 
Explanation: 
The second Hexacontatetragonol number is 64. 
Input: N = 3 
Output: 189 
 

 

Approach: The N-th Hexacontatetragon number is given by the formula:
 

  • Nth term of s sided polygon = \frac{((s-2)n^2 - (s-4)n)}{2}
     
  • Therefore Nth term of 64 sided polygon is
     

Tn =\frac{((64-2)n^2 - (64-4)n)}{2} =\frac{(62^2 - 60)}{2}
 

Below is the implementation of the above approach:
 

C++




// C++ implementation for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to Find the
// Nth Hexacontatetragon Number
int HexacontatetragonNum(int n)
{
    return (62 * n * n - 60 * n) / 2;
}
 
// Driver Code
int main()
{
    int n = 3;
    cout << HexacontatetragonNum(n);
 
    return 0;
}


Java




// Java program to find N-th
// Hexacontatetragon number
class GFG{
 
// Function to find the nth
// Hexacontatetragon number
static int HexacontatetragonNum(int n)
{
    return (62 * n * n - 60 * n) / 2;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
    System.out.print(HexacontatetragonNum(n));
}
}
 
// This code is contributed by shubham


Python3




# Python3 implementation for above approach
 
# Function to Find the
# Nth Hexacontatetragon Number
def HexacontatetragonNum(n):
 
    return (62 * n * n - 60 * n) / 2;
 
# Driver Code
n = 3;
print(HexacontatetragonNum(n));
 
# This code is contributed by Code_Mech


C#




// C# program to find N-th
// Hexacontatetragon number
using System;
class GFG{
 
// Function to find the nth
// Hexacontatetragon number
static int HexacontatetragonNum(int n)
{
    return (62 * n * n - 60 * n) / 2;
}
 
// Driver code
public static void Main()
{
    int n = 3;
    Console.Write(HexacontatetragonNum(n));
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
 
// Javascript program to find N-th
// Hexacontatetragon number
 
 
    // Function to find the nth
    // Hexacontatetragon number
    function HexacontatetragonNum( n) {
        return (62 * n * n - 60 * n) / 2;
    }
 
    // Driver code
      
        let n = 3;
        document.write(HexacontatetragonNum(n));
 
 
// This code contributed by aashish1995
 
</script>


Output: 

189

 

Time Complexity: O(1)

Reference: https://en.wikipedia.org/wiki/Hexacontatetragon

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
13 Jul, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments