Given a number n, the task is to find Nth heptagonal number. A Heptagonal number represents heptagon and belongs to a figurative number. Heptagonal has seven angles, seven vertices, and seven-sided polygon.
Examples :
Input : 2
Output :7
Input :15
Output :540
Few Heptagonal numbers are :
1, 7, 18, 34, 55, 81, 112, 148, 189, 235………..
A formula to calculate Nth Heptagonal number:
C++
// C++ program to find the // nth Heptagonal number #include <iostream> using namespace std; // Function to return Nth Heptagonal // number int heptagonalNumber( int n) { return ((5 * n * n) - (3 * n)) / 2; } // Drivers Code int main() { int n = 2; cout << heptagonalNumber(n) << endl; n = 15; cout << heptagonalNumber(n) << endl; return 0; } |
C
// C program to find the // nth Heptagonal number #include <stdio.h> // Function to return Nth Heptagonal // number int heptagonalNumber( int n) { return ((5 * n * n) - (3 * n)) / 2; } // Drivers Code int main() { int n = 2; printf ( "%d\n" ,heptagonalNumber(n)); n = 15; printf ( "%d\n" ,heptagonalNumber(n)); return 0; } // This code is contributed by kothavvsaakash. |
Java
// Java program to find the // nth Heptagonal number import java.io.*; class GFG { // Function to return // Nth Heptagonal number static int heptagonalNumber( int n) { return (( 5 * n * n) - ( 3 * n)) / 2 ; } // Driver Code public static void main (String[] args) { int n = 2 ; System.out.println(heptagonalNumber(n)); n = 15 ; System.out.println(heptagonalNumber(n)); } } // This code is contributed by anuj_67. |
Python3
# Program to find nth # Heptagonal number # Function to find # nth Heptagonal number def heptagonalNumber(n) : # Formula to calculate # nth Heptagonal number return (( 5 * n * n) - ( 3 * n)) / / 2 # Driver Code if __name__ = = '__main__' : n = 2 print (heptagonalNumber(n)) n = 15 print (heptagonalNumber(n)) # This code is contributed # by ajit |
C#
// C# program to find the // nth Heptagonal number using System; class GFG { // Function to return // Nth Heptagonal number static int heptagonalNumber( int n) { return ((5 * n * n) - (3 * n)) / 2; } // Driver Code public static void Main () { int n = 2; Console.WriteLine(heptagonalNumber(n)); n = 15; Console.WriteLine(heptagonalNumber(n)); } } // This code is contributed by anuj_67. |
PHP
<?php // PHP program to find the // nth Heptagonal number // Function to return Nth // Heptagonal number function heptagonalNumber( $n ) { return ((5 * $n * $n ) - (3 * $n )) / 2; } // Driver Code $n = 2; echo heptagonalNumber( $n ), "\n" ; $n = 15; echo heptagonalNumber( $n ); // This code is contributed // by anuj_67. ?> |
Javascript
<script> // Javascript program to find the // nth Heptagonal number // Function to return Nth Heptagonal // number function heptagonalNumber(n) { return parseInt(((5 * n * n) - (3 * n)) / 2); } // Drivers Code let n = 2; document.write(heptagonalNumber(n) + "<br>" ); n = 15; document.write(heptagonalNumber(n) + "<br>" ); // This code is contributed by rishavmahato348. </script> |
7 540
Time Complexity: O(1), since there is no loop or recursion.
Auxiliary Space: O(1), since no extra space has been taken.
Reference: https://en.wikipedia.org/wiki/Heptagonal_number
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!