Hensel’s Lemma is a result that stipulates conditions for roots of polynomials modulo powers of primes to be “lifted” to roots modulo higher powers. The lifting method outlined in the proof is reminiscent of Newton’s Method for solving equations. Say the equations of the below type is to be solved:
The idea is to use Hensel’s Lemma to solve this type of congruence. It is also known as Hensel’s “lifting” lemma, which is a result of modular arithmetic. If f is a polynomial function and p is a Prime Number, then if f(a1) = 0 (mod p) and [f'(a1)] mod p != 0, then it’s possible to “lift” this solution to the solution for f(x) = 0 (mod pk) by using the below recursion. Note that the [f'(a1)]-1 refers to the modular inverse of f ‘(a1) modulo p.
Example 1:
First, solve for (x = 2 is the solution for mod 5)
=>
=>
=>
=>
=>
=>
Example 2:
This has no solution as (x3 – 3) % mod 7 = 0 has no solution
Below is the implementation of Hensel’s Lemma:
C++
// C++ program to illustrate the // Hensel's Lemma #include <bits/stdc++.h> using namespace std; // Consider f(x) = x ^ 3 - k, // where k is a constant // Function to find the modular // inverse of a modulo m int inv( int a, int m) { int m0 = m, t, q; int x0 = 0, x1 = 1; if (m == 1) return 0; // Apply the Euclidean algorithm, // to find the modular inverse while (a > 1) { q = a / m; t = m; m = a % m; a = t; t = x0; x0 = x1 - q * x0; x1 = t; } if (x1 < 0) x1 += m0; return x1; } // Function to find the derivative of // f(x) and f'(x) = 3 * (x ^ 2) int derivative( int x) { return 3 * x * x; } // Function to find the image of // x in f(x) = x ^ 3 - k. int Image( int x, int k) { return x * x * x - k; } // Function to find the next power // of the number int next_power( int a_t, int t, int a1, int prime, int k) { // Next power of prime for which // solution is to be found int power_p = ( int ) pow (prime, t + 1); // Using Hensel's recursion to // find the solution (next_a) for // next power of prime int next_a = (a_t - Image(a_t, k) * inv(derivative(a1), prime)) % power_p; // If next_a < 0 return equivalent // positive remainder modulo p if (next_a < 0) return next_a += power_p; // Return the next power of a return next_a; } // Function to find the solution of // the required exponent of prime int powerOfPrime( int prime, int power, int k, int a1) { // The lemma does not work for // derivative of f(x) at a1 if (derivative(a1) != 0) { int a_t = a1; // Looping from 1 to power // of prime whose solution // is to be found for ( int p = 1; p < power; p++) { a_t = next_power(a_t, p, a1, prime, k); } // Final answer after evaluating // all the exponents up till // the required exponent return a_t; } return -1; } // Driver Code int main() { int prime = 7, a1 = 3; int power = 2, k = 3; // Function Call cout << powerOfPrime(prime, power, k, a1); return 0; } |
Java
// Java program to illustrate the // Hensel's Lemma import java.util.*; class GFG{ // Consider f(x) = x ^ 3 - k, // where k is a constant // Function to find the modular // inverse of a modulo m static int inv( int a, int m) { int m0 = m, t, q; int x0 = 0 , x1 = 1 ; if (m == 1 ) return 0 ; // Apply the Euclidean algorithm, // to find the modular inverse while (a > 1 ) { q = a / m; t = m; m = a % m; a = t; t = x0; x0 = x1 - q * x0; x1 = t; } if (x1 < 0 ) x1 += m0; return x1; } // Function to find the derivative of // f(x) and f'(x) = 3 * (x ^ 2) static int derivative( int x) { return 3 * x * x; } // Function to find the image of // x in f(x) = x ^ 3 - k. static int Image( int x, int k) { return x * x * x - k; } // Function to find the next power // of the number static int next_power( int a_t, int t, int a1, int prime, int k) { // Next power of prime for which // solution is to be found int power_p = ( int )Math.pow(prime, t + 1 ); // Using Hensel's recursion to // find the solution (next_a) for // next power of prime int next_a = (a_t - Image(a_t, k) * inv(derivative(a1), prime)) % power_p; // If next_a < 0 return equivalent // positive remainder modulo p if (next_a < 0 ) return next_a += power_p; // Return the next power of a return next_a; } // Function to find the solution of // the required exponent of prime static int powerOfPrime( int prime, int power, int k, int a1) { // The lemma does not work for // derivative of f(x) at a1 if (derivative(a1) != 0 ) { int a_t = a1; // Looping from 1 to power // of prime whose solution // is to be found for ( int p = 1 ; p < power; p++) { a_t = next_power(a_t, p, a1, prime, k); } // Final answer after evaluating // all the exponents up till // the required exponent return a_t; } return - 1 ; } // Driver Code public static void main(String []args) { int prime = 7 , a1 = 3 ; int power = 2 , k = 3 ; // Function Call System.out.print(powerOfPrime(prime, power, k, a1)); } } // This code is contributed by rutvik_56 |
Python3
# Python3 program to illustrate the # Hensel's Lemma # Consider f(x) = x ^ 3 - k, # where k is a constant # Function to find the modular # inverse of a modulo m def inv(a, m): m0 = m x0 = 0 x1 = 1 if (m = = 1 ): return 0 # Apply the Euclidean algorithm, # to find the modular inverse while (a > 1 ): q = a / / m t = m m = a % m a = t t = x0 x0 = x1 - q * x0 x1 = t if (x1 < 0 ): x1 + = m0 return x1 # Function to find the derivative of # f(x) and f'(x) = 3 * (x ^ 2) def derivative(x): return 3 * x * x # Function to find the image of # x in f(x) = x ^ 3 - k. def Image(x, k): return x * x * x - k # Function to find the next power # of the number def next_power(a_t, t, a1, prime, k): # Next power of prime for which # solution is to be found power_p = int ( pow (prime, t + 1 )) # Using Hensel's recursion to # find the solution(next_a) for # next power of prime next_a = (a_t - Image(a_t, k) * inv(derivative(a1), prime)) % power_p # If next_a < 0 return equivalent # positive remainder modulo p if (next_a < 0 ): next_a + = power_p return next_a # Return the next power of a return next_a # Function to find the solution of # the required exponent of prime def powerOfPrime(prime, power, k, a1): # The lemma does not work for # derivative of f(x) at a1 if (derivative(a1) ! = 0 ): a_t = a1 # Looping from 1 to power # of prime whose solution # is to be found for p in range ( 1 , power): a_t = next_power(a_t, p, a1, prime, k) # Final answer after evaluating # all the exponents up till # the required exponent return a_t return - 1 # Driver Code prime = 7 a1 = 3 power = 2 k = 3 # Function Call print (powerOfPrime(prime, power, k, a1)) # This code is contributed by amreshkumar3 |
C#
// C# program to illustrate the // Hensel's Lemma using System; class GFG { // Consider f(x) = x ^ 3 - k, // where k is a constant // Function to find the modular // inverse of a modulo m static int inv( int a, int m) { int m0 = m, t, q; int x0 = 0, x1 = 1; if (m == 1) return 0; // Apply the Euclidean algorithm, // to find the modular inverse while (a > 1) { q = a / m; t = m; m = a % m; a = t; t = x0; x0 = x1 - q * x0; x1 = t; } if (x1 < 0) x1 += m0; return x1; } // Function to find the derivative of // f(x) and f'(x) = 3 * (x ^ 2) static int derivative( int x) { return 3 * x * x; } // Function to find the image of // x in f(x) = x ^ 3 - k. static int Image( int x, int k) { return x * x * x - k; } // Function to find the next power // of the number static int next_power( int a_t, int t, int a1, int prime, int k) { // Next power of prime for which // solution is to be found int power_p = ( int )Math.Pow(prime, t + 1); // Using Hensel's recursion to // find the solution (next_a) for // next power of prime int next_a = (a_t - Image(a_t, k) * inv(derivative(a1), prime)) % power_p; // If next_a < 0 return equivalent // positive remainder modulo p if (next_a < 0) return next_a += power_p; // Return the next power of a return next_a; } // Function to find the solution of // the required exponent of prime static int powerOfPrime( int prime, int power, int k, int a1) { // The lemma does not work for // derivative of f(x) at a1 if (derivative(a1) != 0) { int a_t = a1; // Looping from 1 to power // of prime whose solution // is to be found for ( int p = 1; p < power; p++) { a_t = next_power(a_t, p, a1, prime, k); } // Final answer after evaluating // all the exponents up till // the required exponent return a_t; } return -1; } // Driver Code public static void Main( string []args) { int prime = 7, a1 = 3; int power = 2, k = 3; // Function Call Console.Write(powerOfPrime(prime, power, k, a1)); } } // This code is contributed by pratham76. |
Javascript
<script> // Javascript program to illustrate the // Hensel's Lemma // Consider f(x) = x ^ 3 - k, // where k is a constant // Function to find the modular // inverse of a modulo m function inv(a, m) { let m0 = m, t, q; let x0 = 0, x1 = 1; if (m == 1) return 0; // Apply the Euclidean algorithm, // to find the modular inverse while (a > 1) { q = Math.floor(a / m); t = m; m = a % m; a = t; t = x0; x0 = x1 - q * x0; x1 = t; } if (x1 < 0) x1 += m0; return x1; } // Function to find the derivative of // f(x) and f'(x) = 3 * (x ^ 2) function derivative(x) { return 3 * x * x; } // Function to find the image of // x in f(x) = x ^ 3 - k. function Image(x, k) { return x * x * x - k; } // Function to find the next power // of the number function next_power(a_t, t, a1, prime, k) { // Next power of prime for which // solution is to be found let power_p = Math.floor(Math.pow(prime, t + 1)); // Using Hensel's recursion to // find the solution (next_a) for // next power of prime let next_a = (a_t - Image(a_t, k) * inv(derivative(a1), prime)) % power_p; // If next_a < 0 return equivalent // positive remainder modulo p if (next_a < 0) return next_a += power_p; // Return the next power of a return next_a; } // Function to find the solution of // the required exponent of prime function powerOfPrime(prime, power, k, a1) { // The lemma does not work for // derivative of f(x) at a1 if (derivative(a1) != 0) { let a_t = a1; // Looping from 1 to power // of prime whose solution // is to be found for (let p = 1; p < power; p++) { a_t = next_power(a_t, p, a1, prime, k); } // Final answer after evaluating // all the exponents up till // the required exponent return a_t; } return -1; } // Driver Code let prime = 7, a1 = 3; let power = 2, k = 3; // Function Call document.write(powerOfPrime(prime, power, k, a1)); // This code is contributed by target_2. </script> |
6
Time Complexity: O(log N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!