Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIHeight of Factor Tree for a given number

Height of Factor Tree for a given number

Given a positive integer N, the task is to find the height of the Factor Tree of the given integer N.

Examples:

Input: N = 20
Output: 3
Explanation: The height of the Factor Tree of 20 shown in the image below is 3.

Input: N = 48
Output: 5

Approach: The given problem can be solved by using the steps discussed below:

  • Initialize a variable, say height as 0 that stores the height of the Factor Tree of the given integer N.
  • Iterate over all the values of i in the range [2, ?N] and perform the following steps:
    1. Find the smallest divisor of N and if it exists, then increment the value of height by 1.
    2. If a divisor i exists, then repeat the above step by updating the value of N to N / i, until N > 1.
    3. If no divisors of N exist break the loop.
  • After completing the above steps, print the value of height as the answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the height of the
// Factor Tree of the integer N
int factorTree(int N)
{
    // Stores the height of Factor Tree
    int height = 0;
 
    // Loop to iterate over values of N
    while (N > 1) {
        // Stores if there exist
        // a factor of N or not
        bool flag = false;
 
        // Loop to find the smallest
        // factor of N
        for (int i = 2; i <= sqrt(N); i++) {
            // If i is a factor of N
            if (N % i == 0) {
                N = N / i;
                flag = true;
                break;
            }
        }
 
        // Increment the height
        height++;
 
        // If there are no factors of N
        // i.e, N is prime, break loop
        if (!flag) {
            break;
        }
    }
 
    // Return Answer
    return height;
}
 
// Driver Code
int main()
{
    int N = 48;
    cout << factorTree(N);
 
    return 0;
}


Java




// Java program for the above approach
public class Main
{
    // Function to find the height of the
    // Factor Tree of the integer N
    static int factorTree(int N)
    {
        
        // Stores the height of Factor Tree
        int height = 0;
       
        // Loop to iterate over values of N
        while (N > 1)
        {
           
            // Stores if there exist
            // a factor of N or not
            boolean flag = false;
       
            // Loop to find the smallest
            // factor of N
            for (int i = 2; i <= Math.sqrt(N); i++)
            {
               
                // If i is a factor of N
                if (N % i == 0) {
                    N = N / i;
                    flag = true;
                    break;
                }
            }
       
            // Increment the height
            height++;
       
            // If there are no factors of N
            // i.e, N is prime, break loop
            if (!flag) {
                break;
            }
        }
       
        // Return Answer
        return height;
    }
     
    public static void main(String[] args) {
        int N = 48;
        System.out.println(factorTree(N));
    }
}
 
// This code is contributed by mukesh07.


Python3




# Python 3 program for the above approach
from math import sqrt
 
# Function to find the height of the
# Factor Tree of the integer N
def factorTree(N):
   
    # Stores the height of Factor Tree
    height = 0
 
    # Loop to iterate over values of N
    while (N > 1):
       
        # Stores if there exist
        # a factor of N or not
        flag = False
 
        # Loop to find the smallest
        # factor of N
        for i in range(2,int(sqrt(N))+1,1):
            # If i is a factor of N
            if (N % i == 0):
                N = N // i
                flag = True
                break
 
        # Increment the height
        height += 1
 
        # If there are no factors of N
        # i.e, N is prime, break loop
        if (flag==False):
            break
 
    # Return Answer
    return height
 
# Driver Code
if __name__ == '__main__':
    N = 48
    print(factorTree(N))
     
    # This code is contributed by SURENDRA_GANGWAR.


C#




// C# program for the above approach
using System;
class GFG {
     
    // Function to find the height of the
    // Factor Tree of the integer N
    static int factorTree(int N)
    {
       
        // Stores the height of Factor Tree
        int height = 0;
      
        // Loop to iterate over values of N
        while (N > 1) {
            // Stores if there exist
            // a factor of N or not
            bool flag = false;
      
            // Loop to find the smallest
            // factor of N
            for (int i = 2; i <= Math.Sqrt(N); i++) {
                // If i is a factor of N
                if (N % i == 0) {
                    N = N / i;
                    flag = true;
                    break;
                }
            }
      
            // Increment the height
            height++;
      
            // If there are no factors of N
            // i.e, N is prime, break loop
            if (!flag) {
                break;
            }
        }
      
        // Return Answer
        return height;
    }
 
  static void Main() {
    int N = 48;
    Console.Write(factorTree(N));
  }
}
 
// This code is contributed by decode2207.


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
 
        // Function to find the height of the
        // Factor Tree of the integer N
        function factorTree(N)
        {
         
            // Stores the height of Factor Tree
            let height = 0;
 
            // Loop to iterate over values of N
            while (N > 1)
            {
             
                // Stores if there exist
                // a factor of N or not
                let flag = false;
 
                // Loop to find the smallest
                // factor of N
                for (let i = 2; i <= Math.sqrt(N); i++)
                {
                 
                    // If i is a factor of N
                    if (N % i == 0) {
                        N = Math.floor(N / i);
                        flag = true;
                        break;
                    }
                }
 
                // Increment the height
                height++;
 
                // If there are no factors of N
                // i.e, N is prime, break loop
                if (!flag) {
                    break;
                }
            }
 
            // Return Answer
            return height;
        }
 
        // Driver Code
        let N = 48;
        document.write(factorTree(N));
 
// This code is contributed by Potta Lokesh
 
    </script>


Output: 

5

 

Time Complexity: O(?N*log N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments