Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIHCF of array of fractions (or rational numbers)

HCF of array of fractions (or rational numbers)

Given a fraction series. Find the H.C.F of a given fraction series. 

Examples: 

Input : [{2, 5}, {8, 9}, {16, 81}, {10, 27}]
Output :  2, 405 
Explanation : 2/405 is the largest number that
divides all 2/5, 8/9, 16/81 and 10/27.

Input : [{9, 10}, {12, 25}, {18, 35}, {21, 40}]
Output : 3, 1400

Approach: 

Find the H.C.F of numerators. 
Find the L.C.M of denominators. 
Calculate fraction of H.C.F/L.C.M. 
Reduce the fraction to Lowest Fraction. 

Implementation:

C++




// CPP program to find HCF of array of
// rational numbers (fractions).
#include <iostream>
using namespace std;
 
// hcf of two number
int gcd(int a, int b)
{
    if (a % b == 0)
        return b;
    else
        return (gcd(b, a % b));
}
 
// find hcf of numerator series
int findHcf(int** arr, int size)
{
    int ans = arr[0][0];   
    for (int i = 1; i < size; i++)   
        ans = gcd(ans, arr[i][0]);
 
    // return hcf of numerator
    return (ans);
}
 
// find lcm of denominator series
int findLcm(int** arr, int size)
{
    // ans contains LCM of arr[0][1], ..arr[i][1]
    int ans = arr[0][1];
    for (int i = 1; i < size; i++)
        ans = (((arr[i][1] * ans)) /
               (gcd(arr[i][1], ans)));
 
    // return lcm of denominator
    return (ans);
}
 
// Core Function
int* hcfOfFraction(int** arr, int size)
{
    // found hcf of numerator
    int hcf_of_num = findHcf(arr, size);
 
    // found lcm of denominator
    int lcm_of_deno = findLcm(arr, size);
 
    int* result = new int[2];
    result[0] = hcf_of_num;
    result[1] = lcm_of_deno;
 
    for (int i = result[0] / 2; i > 1; i--)
    {
        if ((result[1] % i == 0) && (result[0] % i == 0))
        {
            result[1] /= i;
            result[0] /= i;
        }
    }
 
    // return result
    return (result);
}
 
// Main function
int main()
{
    int size = 4;
    int** arr = new int*[size];
 
    // Initialize the every row
    // with size 2 (1 for numerator
    // and 2 for denominator)
    for (int i = 0; i < size; i++)
        arr[i] = new int[2];
 
    arr[0][0] = 9;
    arr[0][1] = 10;
    arr[1][0] = 12;
    arr[1][1] = 25;
    arr[2][0] = 18;
    arr[2][1] = 35;
    arr[3][0] = 21;
    arr[3][1] = 40;
     
    // function for calculate the result
    int* result = hcfOfFraction(arr, size);
     
    // print the result
    cout << result[0] << ", " << result[1] << endl;
    return 0;
}


Java




// Java program to find HCF of array of
// rational numbers (fractions).
class GFG
{
 
// hcf of two number
static int gcd(int a, int b)
{
    if (a % b == 0)
        return b;
    else
        return (gcd(b, a % b));
}
 
// find hcf of numerator series
static int findHcf(int [][]arr, int size)
{
    int ans = arr[0][0];
    for (int i = 1; i < size; i++)
        ans = gcd(ans, arr[i][0]);
 
    // return hcf of numerator
    return (ans);
}
 
// find lcm of denominator series
static int findLcm(int[][] arr, int size)
{
    // ans contains LCM of arr[0][1], ..arr[i][1]
    int ans = arr[0][1];
    for (int i = 1; i < size; i++)
        ans = (((arr[i][1] * ans)) /
            (gcd(arr[i][1], ans)));
 
    // return lcm of denominator
    return (ans);
}
 
// Core Function
static int[] hcfOfFraction(int[][] arr, int size)
{
    // found hcf of numerator
    int hcf_of_num = findHcf(arr, size);
 
    // found lcm of denominator
    int lcm_of_deno = findLcm(arr, size);
 
    int[] result = new int[2];
    result[0] = hcf_of_num;
    result[1] = lcm_of_deno;
 
    for (int i = result[0] / 2; i > 1; i--)
    {
        if ((result[1] % i == 0) && (result[0] % i == 0))
        {
            result[1] /= i;
            result[0] /= i;
        }
    }
 
    // return result
    return (result);
}
 
// Driver code
public static void main(String[] args)
{
    int size = 4;
    int[][] arr = new int[size][size];
 
    // Initialize the every row
    // with size 2 (1 for numerator
    // and 2 for denominator)
    for (int i = 0; i < size; i++)
        arr[i] = new int[2];
 
    arr[0][0] = 9;
    arr[0][1] = 10;
    arr[1][0] = 12;
    arr[1][1] = 25;
    arr[2][0] = 18;
    arr[2][1] = 35;
    arr[3][0] = 21;
    arr[3][1] = 40;
     
    // function for calculate the result
    int[] result = hcfOfFraction(arr, size);
     
    // print the result
    System.out.println(result[0] + ", " + result[1]);
    }
}
 
/* This code contributed by PrinciRaj1992 */


Python3




# Python 3 program to find HCF of array of
from math import gcd
 
# find hcf of numerator series
def findHcf(arr, size):
    ans = arr[0][0]
    for i in range(1, size, 1):
        ans = gcd(ans, arr[i][0])
 
    # return hcf of numerator
    return (ans)
 
# find lcm of denominator series
def findLcm(arr, size):
     
    # ans contains LCM of arr[0][1], ..arr[i][1]
    ans = arr[0][1]
    for i in range(1, size, 1):
        ans = int((((arr[i][1] * ans)) /
                (gcd(arr[i][1], ans))))
 
    # return lcm of denominator
    return (ans)
 
# Core Function
def hcfOfFraction(arr, size):
     
    # found hcf of numerator
    hcf_of_num = findHcf(arr, size)
 
    # found lcm of denominator
    lcm_of_deno = findLcm(arr, size)
 
    result = [0 for i in range(2)]
    result[0] = hcf_of_num
    result[1] = lcm_of_deno
 
    i = int(result[0] / 2)
    while(i > 1):
        if ((result[1] % i == 0) and
            (result[0] % i == 0)):
            result[1] = int(result[1] / i)
            result[0] = (result[0] / i)
 
    # return result
    return (result)
 
# Driver Code
if __name__ == '__main__':
    size = 4
    arr = [0 for i in range(size)]
 
    # Initialize the every row
    # with size 2 (1 for numerator
    # and 2 for denominator)
    for i in range(size):
        arr[i] = [0 for i in range(2)]
 
    arr[0][0] = 9
    arr[0][1] = 10
    arr[1][0] = 12
    arr[1][1] = 25
    arr[2][0] = 18
    arr[2][1] = 35
    arr[3][0] = 21
    arr[3][1] = 40
     
    # function for calculate the result
    result = hcfOfFraction(arr, size)
     
    # print the result
    print(result[0], ",", result[1])
     
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to find HCF of array of
// rational numbers (fractions).
using System;
 
class GFG
{
 
// hcf of two number
static int gcd(int a, int b)
{
    if (a % b == 0)
        return b;
    else
        return (gcd(b, a % b));
}
 
// find hcf of numerator series
static int findHcf(int [,]arr, int size)
{
    int ans = arr[0, 0];
    for (int i = 1; i < size; i++)
        ans = gcd(ans, arr[i, 0]);
 
    // return hcf of numerator
    return (ans);
}
 
// find lcm of denominator series
static int findLcm(int[,] arr, int size)
{
    // ans contains LCM of arr[0,1], ..arr[i,1]
    int ans = arr[0,1];
    for (int i = 1; i < size; i++)
        ans = (((arr[i, 1] * ans)) /
            (gcd(arr[i, 1], ans)));
 
    // return lcm of denominator
    return (ans);
}
 
// Core Function
static int[] hcfOfFraction(int[,] arr, int size)
{
    // found hcf of numerator
    int hcf_of_num = findHcf(arr, size);
 
    // found lcm of denominator
    int lcm_of_deno = findLcm(arr, size);
 
    int[] result = new int[2];
    result[0] = hcf_of_num;
    result[1] = lcm_of_deno;
 
    for (int i = result[0] / 2; i > 1; i--)
    {
        if ((result[1] % i == 0) && (result[0] % i == 0))
        {
            result[1] /= i;
            result[0] /= i;
        }
    }
 
    // return result
    return (result);
}
 
// Driver code
public static void Main(String[] args)
{
    int size = 4;
    int[,] arr = new int[size, size];
 
    // Initialize the every row
    // with size 2 (1 for numerator
    // and 2 for denominator)
 
 
    arr[0, 0] = 9;
    arr[0, 1] = 10;
    arr[1, 0] = 12;
    arr[1, 1] = 25;
    arr[2, 0] = 18;
    arr[2, 1] = 35;
    arr[3, 0] = 21;
    arr[3, 1] = 40;
     
    // function for calculate the result
    int[] result = hcfOfFraction(arr, size);
     
    // print the result
    Console.WriteLine(result[0] + ", " + result[1]);
    }
}
 
// This code has been contributed by 29AjayKumar


Javascript




<script>
// Javascript program to find HCF of array of
// rational numbers (fractions).
 
// hcf of two number
function gcd(a,b)
{
    if (a % b == 0)
        return b;
    else
        return (gcd(b, a % b));
}
 
// find hcf of numerator series
function findHcf(arr,size)
{
    let ans = arr[0][0];
    for (let i = 1; i < size; i++)
        ans = gcd(ans, arr[i][0]);
   
    // return hcf of numerator
    return (ans);
}
 
// find lcm of denominator series
function findLcm(arr,size)
{
    // ans contains LCM of arr[0][1], ..arr[i][1]
    let ans = arr[0][1];
    for (let i = 1; i < size; i++)
        ans = Math.floor(((arr[i][1] * ans)) /
            (gcd(arr[i][1], ans)));
   
    // return lcm of denominator
    return (ans);
}
 
// Core Function
function hcfOfFraction(arr,size)
{
    // found hcf of numerator
    let hcf_of_num = findHcf(arr, size);
   
    // found lcm of denominator
    let lcm_of_deno = findLcm(arr, size);
   
    let result = new Array(2);
    result[0] = hcf_of_num;
    result[1] = lcm_of_deno;
   
    for (let i = result[0] / 2; i > 1; i--)
    {
        if ((result[1] % i == 0) && (result[0] % i == 0))
        {
            result[1] /= i;
            result[0] /= i;
        }
    }
   
    // return result
    return (result);
}
 
// Driver code
let size = 4;
let arr = new Array(size);
 
// Initialize the every row
// with size 2 (1 for numerator
// and 2 for denominator)
for (let i = 0; i < size; i++)
    arr[i] = new Array(2);
 
arr[0][0] = 9;
arr[0][1] = 10;
arr[1][0] = 12;
arr[1][1] = 25;
arr[2][0] = 18;
arr[2][1] = 35;
arr[3][0] = 21;
arr[3][1] = 40;
 
// function for calculate the result
let result = hcfOfFraction(arr, size);
 
// print the result
document.write(result[0] + ", " + result[1]+"<br>");
 
// This code is contributed by rag2127
</script>


Output

3, 1400

Time Complexity: O(n log(a)) , where a is the maximum element in array
Auxiliary Space: O(log(a)), where a is the maximum element in array

Please suggest if someone has a better solution which is more efficient in terms of space and time.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments