Given a number N, the task is to check if N is an Giuga Number or not. If N is an Giuga Number then print “Yes” else print “No”.
A Giuga Number is a composite number N such that p divides (N/p – 1) for every prime factor p of N.
Examples:
Input: N = 30
Output: Yes
Explanation:
30 is a composite number whose prime divisors are {2, 3, 5}, such that
2 divides 30/2 – 1 = 14,
3 divides 30/3 – 1 = 9, and
5 divides 30/5 – 1 = 5.Input: N = 161
Output: No
Approach: The idea is to check if N is composite number or not. If not then print “No”.
If N is a composite number then find the prime factors of a number and for each prime factor p check if the condition p divides (n/p – 1) holds true or not. If the above condition holds true then print “Yes” else print “No”.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check if n is // a composite number bool isComposite( int n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return false ; // This is checked to skip // middle 5 numbers if (n % 2 == 0 || n % 3 == 0) return true ; for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return true ; return false ; } // Function to check if N is a // Giuga Number bool isGiugaNum( int n) { // N should be composite to be // a Giuga Number if (!(isComposite(n))) return false ; int N = n; // Print the number of 2s // that divide n while (n % 2 == 0) { if ((N / 2 - 1) % 2 != 0) return false ; n = n / 2; } // N must be odd at this point. // So we can skip one element for ( int i = 3; i <= sqrt (n); i = i + 2) { // While i divides n, // print i and divide n while (n % i == 0) { if ((N / i - 1) % i != 0) return false ; n = n / i; } } // This condition is to handle // the case when n // is a prime number > 2 if (n > 2) if ((N / n - 1) % n != 0) return false ; return true ; } // Driver Code int main() { // Given Number N int N = 30; // Function Call if (isGiugaNum(N)) cout << "Yes" ; else cout << "No" ; } |
Java
// Java program for the above approach class GFG{ // Function to check if n is // a composite number static boolean isComposite( int n) { // Corner cases if (n <= 1 ) return false ; if (n <= 3 ) return false ; // This is checked to skip // middle 5 numbers if (n % 2 == 0 || n % 3 == 0 ) return true ; for ( int i = 5 ; i * i <= n; i = i + 6 ) if (n % i == 0 || n % (i + 2 ) == 0 ) return true ; return false ; } // Function to check if N is a // Giuga Number static boolean isGiugaNum( int n) { // N should be composite to be // a Giuga Number if (!(isComposite(n))) return false ; int N = n; // Print the number of 2s // that divide n while (n % 2 == 0 ) { if ((N / 2 - 1 ) % 2 != 0 ) return false ; n = n / 2 ; } // N must be odd at this point. // So we can skip one element for ( int i = 3 ; i <= Math.sqrt(n); i = i + 2 ) { // While i divides n, // print i and divide n while (n % i == 0 ) { if ((N / i - 1 ) % i != 0 ) return false ; n = n / i; } } // This condition is to handle // the case when n // is a prime number > 2 if (n > 2 ) if ((N / n - 1 ) % n != 0 ) return false ; return true ; } // Driver code public static void main(String[] args) { // Given Number N int n = 30 ; // Function Call if (isGiugaNum(n)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by Pratima Pandey |
Python3
# Python program for the above approach import math # Function to check if n is # a composite number def isComposite(n): # Corner cases if (n < = 1 ): return False if (n < = 3 ): return False # This is checked to skip # middle 5 numbers if (n % 2 = = 0 or n % 3 = = 0 ): return True i = 5 while (i * i < = n): if (n % i = = 0 or n % (i + 2 ) = = 0 ): return True i + = 6 return False # Function to check if N is a # Giuga Number def isGiugaNum(n): # N should be composite to be # a Giuga Number if ( not (isComposite(n))): return False N = n # Print the number of 2s # that divide n while (n % 2 = = 0 ): if (( int (N / 2 ) - 1 ) % 2 ! = 0 ): return False n = int (n / 2 ) # N must be odd at this point. # So we can skip one element for i in range ( 3 , int (math.sqrt(n)) + 1 , 2 ): # While i divides n, # print i and divide n while (n % i = = 0 ): if (( int (N / i) - 1 ) % i ! = 0 ): return False n = int (n / i) # This condition is to handle # the case when n # is a prime number > 2 if (n > 2 ): if (( int (N / n) - 1 ) % n ! = 0 ): return False return True # Driver code # Given Number N n = 30 if (isGiugaNum(n)): print ( "Yes" ) else : print ( "No" ) # This code is contributed by avanitrachhadiya2155 |
C#
// C# program for the above approach using System; class GFG{ // Function to check if n is // a composite number static bool isComposite( int n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return false ; // This is checked to skip // middle 5 numbers if (n % 2 == 0 || n % 3 == 0) return true ; for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return true ; return false ; } // Function to check if N is a // Giuga Number static bool isGiugaNum( int n) { // N should be composite to be // a Giuga Number if (!(isComposite(n))) return false ; int N = n; // Print the number of 2s // that divide n while (n % 2 == 0) { if ((N / 2 - 1) % 2 != 0) return false ; n = n / 2; } // N must be odd at this point. // So we can skip one element for ( int i = 3; i <= Math.Sqrt(n); i = i + 2) { // While i divides n, // print i and divide n while (n % i == 0) { if ((N / i - 1) % i != 0) return false ; n = n / i; } } // This condition is to handle // the case when n // is a prime number > 2 if (n > 2) if ((N / n - 1) % n != 0) return false ; return true ; } // Driver code static void Main() { // Given Number N int N = 30; // Function Call if (isGiugaNum(N)) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This code is contributed by divyeshrabadiya07 |
Javascript
<script> // JavaScript program for the above approach // Function to check if n is // a composite number function isComposite(n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return false ; // This is checked to skip // middle 5 numbers if (n % 2 == 0 || n % 3 == 0) return true ; for (let i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return true ; return false ; } // Function to check if N is a // Giuga Number function isGiugaNum(n) { // N should be composite to be // a Giuga Number if (!(isComposite(n))) return false ; let N = n; // Print the number of 2s // that divide n while (n % 2 == 0) { if ((N / 2 - 1) % 2 != 0) return false ; n = n / 2; } // N must be odd at this point. // So we can skip one element for (let i = 3; i <= Math.sqrt(n); i = i + 2) { // While i divides n, // print i and divide n while (n % i == 0) { if ((N / i - 1) % i != 0) return false ; n = n / i; } } // This condition is to handle // the case when n // is a prime number > 2 if (n > 2) if ((N / n - 1) % n != 0) return false ; return true ; } // Driver Code // Given Number N let n = 30; // Function Call if (isGiugaNum(n)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by susmitakundugoaldanga </script> |
Yes
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!