Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns).
Now let’s see how to get the specified row value of a given DataFrame.
We shall be using loc[ ], iloc[ ], and [ ] for a data frame object to select rows and columns from our data frame.
- iloc[ ] is used to select rows/ columns by their corresponding labels.
- loc[ ] is used to select rows/columns by their indices.
- [ ] is used to select columns by their respective names.
Method 1: Using iloc[ ].
Example: Suppose you have a pandas dataframe and you want to select a specific row given its index.
Python3
# import pandas library import pandas as pd # Creating a dictionary d = { 'sample_col1' : [ 1 , 2 , 3 ], 'sample_col2' : [ 4 , 5 , 6 ], 'sample_col3' : [ 7 , 8 , 9 ]} # Creating a Dataframe df = pd.DataFrame(d) # show the dataframe print (df) print () # Select Row No. 2 print (df.iloc[ 2 ]) |
Output:
Method 2: Using loc[ ].
Example: Suppose you want to select rows where the value of a given column is given.
Python3
# import pandas library import pandas as pd # Creating a dictionary d = { 'sample_col1' : [ 1 , 2 , 1 ], 'sample_col2' : [ 4 , 5 , 6 ], 'sample_col3' : [ 7 , 8 , 9 ]} # Creating a Dataframe df = pd.DataFrame(d) # show the dataframe print (df) print () # Select rows where sample_col1 is 1 print (df.loc[df[ 'sample_col1' ] = = 1 ]) |
Output:
Method 3: Using [ ] and iloc[ ].
Example: Suppose you want only the values pertaining to specific columns of a specific row.
Python3
# import pandas library import pandas as pd # Creating a dictionary d = { 'sample_col1' : [ 1 , 2 , 1 ], 'sample_col2' : [ 4 , 5 , 6 ], 'sample_col3' : [ 7 , 8 , 9 ]} # Creating a Dataframe df = pd.DataFrame(d) # show the dataframe print (df) print () # Display column 1 and 3 for row 2 print (df[[ 'sample_col1' , 'sample_col3' ]].iloc[ 1 ]) |
Output: