Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIGet the kth smallest number using the digits of the given number

Get the kth smallest number using the digits of the given number

Given a non-negative number n and a value k. Find the kth smallest number that can be formed using the digits of the given number n. It is guaranteed that the kth smallest number can be formed. Note that the number could be very large and may not even fit into long long int. Examples:

Input : n = 1234, k = 2
Output : 1243

Input : n = 36012679802, k = 4
Output : 10022366897

The idea is to first sort digits and find the smallest number, then find k-th permutation starting from smallest number. To sort digits, we use an frequency counting technique as number of digits are small. 

CPP




// C++ implementation to get the kth smallest
// number using the digits of the given number
#include <bits/stdc++.h>
using namespace std;
 
// function to get the smallest digit in 'num'
// which is greater than 0
char getSmallDgtGreaterThanZero(string num, int n)
{
    // 's_dgt' to store the smallest digit
    // greater than 0
        char s_dgt = '9';
     
    for (int i=0; i<n; i++)
        if (num[i] < s_dgt && num[i] != '0')
            s_dgt = num[i];
     
    // required smallest digit in 'num'
    return s_dgt;
}
 
// function to get the kth smallest number
string kthSmallestNumber(string num, int k)
{
    // FIND SMALLEST POSSIBLE NUMBER BY SORTING
    // DIGITS
 
    // count frequency of each digit
    int freq[10];
    string final_num = "";
 
    memset(freq, 0, sizeof(freq));
    int n = num.size();
 
    // counting frequency of each digit
    for (int i = 0; i < n; i++)
        freq[num[i] - '0']++;
     
    // get the smallest digit greater than 0
    char s_dgt = getSmallDgtGreaterThanZero(num, n);    
     
    // add 's_dgt' to 'final_num'
    final_num += s_dgt;
     
    // reduce frequency of 's_dgt' by 1 in 'freq'
    freq[s_dgt - '0']--;
     
    // add each digit according to its frequency
    // to 'final_num'
    for (int i=0; i<10; i++)
        for (int j=1; j<=freq[i]; j++)
            final_num += (char)(i+48);    
     
    // FIND K-TH PERMUTATION OF SMALLEST NUMBER
    for (int i=1; i<k; i++)
    next_permutation(final_num.begin(), final_num.end());
     
    // required kth smallest number
    return final_num;
}
 
// Driver program to test above
int main()
{
    string num = "36012679802";
    int k = 4;
    cout << kthSmallestNumber(num, k);
    return 0;
}


Java




// GFG
// Java program that finds the kth smallest number using the
// digits of a given number
import java.util.*;
 
class Main {
    // function to get the smallest digit in 'num'
    // which is greater than 0
    static char getSmallDgtGreaterThanZero(String num,
                                           int n)
    {
        // 's_dgt' to store the smallest digit
        // greater than 0
        char s_dgt = '9';
        for (int i = 0; i < n; i++) {
            if (num.charAt(i) < s_dgt
                && num.charAt(i) != '0') {
                s_dgt = num.charAt(i);
            }
        }
 
        // required smallest digit in 'num'
        return s_dgt;
    }
 
    // function to get the kth smallest number
    static String kthSmallestNumber(String num, int k)
    {
        // FIND SMALLEST POSSIBLE NUMBER BY SORTING
        // DIGITS
 
        // count frequency of each digit
        int[] freq = new int[10];
        StringBuilder final_num = new StringBuilder();
 
        Arrays.fill(freq, 0);
        int n = num.length();
 
        // counting frequency of each digit
        for (int i = 0; i < n; i++) {
            freq[num.charAt(i) - '0']++;
        }
 
        // get the smallest digit greater than 0
        char s_dgt = getSmallDgtGreaterThanZero(num, n);
 
        // add 's_dgt' to 'final_num'
        final_num.append(s_dgt);
 
        // reduce frequency of 's_dgt' by 1 in 'freq'
        freq[s_dgt - '0']--;
 
        // add each digit according to its frequency
        // to 'final_num'
        for (int i = 0; i < 10; i++) {
            for (int j = 1; j <= freq[i]; j++) {
                final_num.append((char)(i + '0'));
            }
        }
 
        // FIND K-TH PERMUTATION OF SMALLEST NUMBER
        for (int i = 1; i < k; i++) {
            String temp = final_num.toString();
            final_num = new StringBuilder();
            final_num.append(nextPermutation(temp));
        }
 
        // required kth smallest number
        return final_num.toString();
    }
 
    // function to find the next permutation of a given
    // string
    static String nextPermutation(String str)
    {
        char[] arr = str.toCharArray();
        int i = arr.length - 2;
 
        // find the rightmost element that is smaller than
        // its next element
        while (i >= 0 && arr[i] >= arr[i + 1]) {
            i--;
        }
 
        // if no such element is found, the string is
        // already the last permutation
        if (i < 0) {
            return str;
        }
 
        // find the smallest element to the right of the
        // element found above that is greater than it
        int j = arr.length - 1;
        while (j > i && arr[j] <= arr[i]) {
            j--;
        }
 
        // swap the two elements
        char temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
 
        // reverse the substring to the right of the first
        // element found above
        int left = i + 1;
        int right = arr.length - 1;
        while (left < right) {
            temp = arr[left];
            arr[left] = arr[right];
            arr[right] = temp;
            left++;
            right--;
        }
 
        // requires kth smallest number
        return new String(arr);
    }
 
    // driver code to test above
    public static void main(String[] args)
    {
        String num = "36012679802";
        int k = 4;
        System.out.println(kthSmallestNumber(num, k));
    }
}
// This code is contributed by Sundaram.


Python3




# Python Code
def getSmallDgtGreaterThanZero(num, n):
  
    # 's_dgt' to store the smallest digit
    # greater than 0
    s_dgt = '9'
    for i in range(0, n):
        if (num[i] < s_dgt and num[i] != '0'):
            s_dgt = num[i]
   
    # required smallest digit in 'num'
    return s_dgt
   
# function to get the kth smallest number
def kthSmallestNumber(num, k):
   
    # FIND SMALLEST POSSIBLE NUMBER BY SORTING
    # DIGITS
   
    # count frequency of each digit
    freq = [0] * 10
    final_num = ""
   
    # counting frequency of each digit
    for i in range(0, len(num)):
        freq[int(num[i])] += 1
   
    # get the smallest digit greater than 0
    s_dgt = getSmallDgtGreaterThanZero(num, len(num))
   
    # add 's_dgt' to 'final_num'
    final_num += s_dgt
   
    # reduce frequency of 's_dgt' by 1 in 'freq'
    freq[int(s_dgt)] -= 1
   
    # add each digit according to its frequency
    # to 'final_num'
    for i in range(0, 10):
        for j in range(1, freq[i] + 1):
            final_num += str(i)
   
    # FIND K-TH PERMUTATION OF SMALLEST NUMBER
    for i in range(1, k):
        temp = final_num
        final_num = ""
        final_num += nextPermutation(temp)
   
    # required kth smallest number
    return final_num
   
# function to find the next permutation of a given
# string
def nextPermutation(str):
    arr = list(str)
    i = len(arr) - 2
   
    # find the rightmost element that is smaller than
    # its next element
    while (i >= 0 and arr[i] >= arr[i + 1]):
        i -= 1
   
    # if no such element is found, the string is
    # already the last permutation
    if (i < 0):
        return str
   
    # find the smallest element to the right of the
    # element found above that is greater than it
    j = len(arr) - 1
    while (j > i and arr[j] <= arr[i]):
        j -= 1
   
    # swap the two elements
    arr[i], arr[j] = arr[j], arr[i]
   
    # reverse the substring to the right of the first
    # element found above
    left = i + 1
    right = len(arr) - 1
    while (left < right):
        arr[left], arr[right] = arr[right], arr[left]
        left += 1
        right -= 1
   
    # requires kth smallest number
    return "".join(arr)
   
# driver code to test above
num = "36012679802"
k = 4
print(kthSmallestNumber(num, k))


C#




// C# implementation to get the kth smallest
// number using the digits of the given number
using System;
using System.Linq;
using System.Text;
 
class MainClass {
    // function to get the smallest digit in 'num'
    // which is greater than 0
    public static char GetSmallDgtGreaterThanZero(string num, int n) {
        // 's_dgt' to store the smallest digit
        // greater than 0
        char s_dgt = '9';
        for (int i = 0; i < n; i++) {
            if (num[i] < s_dgt && num[i] != '0') {
                s_dgt = num[i];
            }
        }
 
        // required smallest digit in 'num'
        return s_dgt;
    }
 
    // function to get the kth smallest number
    public static string KthSmallestNumber(string num, int k) {
        // FIND SMALLEST POSSIBLE NUMBER BY SORTING
        // DIGITS
 
        // count frequency of each digit
        int[] freq = new int[10];
        StringBuilder final_num = new StringBuilder();
 
        Array.Fill(freq, 0);
        int n = num.Length;
 
        // counting frequency of each digit
        for (int i = 0; i < n; i++) {
            freq[num[i] - '0']++;
        }
 
        // get the smallest digit greater than 0
        char s_dgt = GetSmallDgtGreaterThanZero(num, n);
 
        // add 's_dgt' to 'final_num'
        final_num.Append(s_dgt);
 
        // reduce frequency of 's_dgt' by 1 in 'freq'
        freq[s_dgt - '0']--;
 
        // add each digit according to its frequency
        // to 'final_num'
        for (int i = 0; i < 10; i++) {
            for (int j = 1; j <= freq[i]; j++) {
                final_num.Append((char)(i + '0'));
            }
        }
 
        // FIND K-TH PERMUTATION OF SMALLEST NUMBER
        for (int i = 1; i < k; i++) {
            string temp = final_num.ToString();
            final_num = new StringBuilder();
            final_num.Append(NextPermutation(temp));
        }
 
        // required kth smallest number
        return final_num.ToString();
    }
 
    // function to find the next permutation of a given
    // string
    public static string NextPermutation(string str) {
        char[] arr = str.ToCharArray();
        int i = arr.Length - 2;
 
        // find the rightmost element that is smaller than
        // its next element
        while (i >= 0 && arr[i] >= arr[i + 1]) {
            i--;
        }
 
        // if no such element is found, the string is
        // already the last permutation
        if (i < 0) {
            return str;
        }
 
        // find the smallest element to the right of the
        // element found above that is greater than it
        int j = arr.Length - 1;
        while (j > i && arr[j] <= arr[i]) {
            j--;
        }
 
        // swap the two elements
        char temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
 
        // reverse the substring to the right of the first
        // element found above
        int left = i + 1;
        int right = arr.Length - 1;
        while (left < right) {
            temp = arr[left];
            arr[left] = arr[right];
            arr[right] = temp;
            left++;
            right--;
        }
 
        // requires kth smallest number
        return new String(arr);
    }
 
    // driver code to test above
    static void Main()
    {
        string num = "36012679802";
        int k = 4;
        Console.WriteLine(KthSmallestNumber(num, k));
    }
}
// This code is contributed by Arushi Goel.


Javascript




// JavaScript Code
function getSmallDgtGreaterThanZero(num, n)
{
 
    // 's_dgt' to store the smallest digit
    // greater than 0
    let s_dgt = '9';
    for (let i = 0; i < n; i++) {
        if (num[i] < s_dgt && num[i] !== '0') {
            s_dgt = num[i];
        }
    }
    // required smallest digit in 'num'
    return s_dgt;
}
 
// function to get the kth smallest number
function kthSmallestNumber(num, k) {
    // FIND SMALLEST POSSIBLE NUMBER BY SORTING
    // DIGITS
     
    // count frequency of each digit
    const freq = new Array(10).fill(0);
    let final_num = '';
     
    // counting frequency of each digit
    for (let i = 0; i < num.length; i++) {
        freq[parseInt(num[i])] += 1;
    }
     
    // get the smallest digit greater than 0
    const s_dgt = getSmallDgtGreaterThanZero(num, num.length);
     
    // add 's_dgt' to 'final_num'
    final_num += s_dgt;
     
    // reduce frequency of 's_dgt' by 1 in 'freq'
    freq[parseInt(s_dgt)] -= 1;
     
    // add each digit according to its frequency
    // to 'final_num'
    for (let i = 0; i < 10; i++) {
        for (let j = 1; j <= freq[i]; j++) {
            final_num += i.toString();
        }
    }
 
    // FIND K-TH PERMUTATION OF SMALLEST NUMBER
    for (let i = 1; i < k; i++) {
        let temp = final_num;
        final_num = '';
        final_num += nextPermutation(temp);
    }
         
        // required kth smallest number
    return final_num;
}
 
// function to find the next permutation of a given
// string
function nextPermutation(str) {
    let arr = str.split('');
    let i = arr.length - 2;
     
    // find the rightmost element that is smaller than
    // its next element
    while (i >= 0 && arr[i] >= arr[i + 1]) {
        i--;
    }
     
    // if no such element is found, the string is
    // already the last permutation
    if (i < 0) {
        return str;
    }
 
    // find the smallest element to the right of the
    // element found above that is greater than it
    let j = arr.length - 1;
    while (j > i && arr[j] <= arr[i]) {
        j--;
    }
     
    // swap the two elements
    [arr[i], arr[j]] = [arr[j], arr[i]];
     
    // reverse the substring to the right of the first
    // element found above
    let left = i + 1;
    let right = arr.length - 1;
    while (left < right) {
        [arr[left], arr[right]] = [arr[right], arr[left]];
        left++;
        right--;
    }
     
    // requires kth smallest number
    return arr.join('');
}
 
// driver code to test above
let num = '36012679802';
let k = 4;
console.log(kthSmallestNumber(num, k));


Output

10022366897

Time Complexity: O(n)
Auxiliary Space: O(1)

If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments