Sunday, December 29, 2024
Google search engine
HomeLanguagesGet the data type of column in Pandas – Python

Get the data type of column in Pandas – Python

 Let’s see how to get data types of columns in the pandas dataframe. First, Let’s create a pandas dataframe.

Example:

Python3




# importing pandas library
import pandas as pd
  
# List of Tuples
employees = [
            ('Stuti', 28, 'Varanasi', 20000),
            ('Saumya', 32, 'Delhi', 25000),
            ('Aaditya', 25, 'Mumbai', 40000),
            ('Saumya', 32, 'Delhi', 35000),
            ('Saumya', 32, 'Delhi', 30000),
            ('Saumya', 32, 'Mumbai', 20000),
            ('Aaditya', 40, 'Dehradun', 24000),
            ('Seema', 32, 'Delhi', 70000)
            ]
  
   
  
# Create a DataFrame
df = pd.DataFrame(employees,
                  columns = ['Name', 'Age',
                             'City', 'Salary'])
# show the dataframe
df


Output: 

Dataframe

Dataframe

Method 1: Using Dataframe.dtypes attribute.

This attribute returns a Series with the data type of each column.

Syntax: DataFrame.dtypes.

Parameter: None.

Returns: dtype of each column.

Example 1: Get data types of all columns of a Dataframe.

Python3




# importing pandas library
import pandas as pd
  
# List of Tuples
employees = [
            ('Stuti', 28, 'Varanasi', 20000),
            ('Saumya', 32, 'Delhi', 25000),
            ('Aaditya', 25, 'Mumbai', 40000),
            ('Saumya', 32, 'Delhi', 35000),
            ('Saumya', 32, 'Delhi', 30000),
            ('Saumya', 32, 'Mumbai', 20000),
            ('Aaditya', 40, 'Dehradun', 24000),
            ('Seema', 32, 'Delhi', 70000)
            ]
  
   
  
# Create a DataFrame
df = pd.DataFrame(employees,
                  columns = ['Name', 'Age',
                             'City', 'Salary'])
  
   
  
# Use Dataframe.dtypes to
# give the series of 
# data types as result
datatypes = df.dtypes
  
# Print the data types
# of each column
datatypes


Output:

Data types of dataframe

Example 2: Get the data type of single column in a Dataframe.

Python3




#importing pandas library
import pandas as pd
  
# List of Tuples
employees = [('Stuti', 28, 'Varanasi', 20000),
            ('Saumya', 32, 'Delhi', 25000),
            ('Aaditya', 25, 'Mumbai', 40000),
            ('Saumya', 32, 'Delhi', 35000),
            ('Saumya', 32, 'Delhi', 30000),
            ('Saumya', 32, 'Mumbai', 20000),
            ('Aaditya', 40, 'Dehradun', 24000),
            ('Seema', 32, 'Delhi', 70000)
            ]
  
# Create a DataFrame
df = pd.DataFrame(employees, 
                  columns = ['Name', 'Age',
                             'City', 'Salary'])
  
# Use Dataframe.dtypes to give 
# data type of 'Salary' as result
datatypes = df.dtypes['Salary']
  
# Print the data types
# of single column
datatypes


Output:

data type of a single column

Method 2: Using Dataframe.info() method.

This method is used to get a concise summary of the dataframe like:

  • Name of columns
  • Data type of columns
  • Rows in Dataframe
  • non-null entries in each column
  • It will also print column count, names and data types.

Syntax: DataFrame.info(verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)

Return: None and prints a summary of a DataFrame.

Example: Get data types of all columns of a Dataframe.

Python3




# importing pandas library
import pandas as pd
  
 # List of Tuples
employees = [('Stuti', 28, 'Varanasi', 20000),
            ('Saumya', 32, 'Delhi', 25000),
            ('Aaditya', 25, 'Mumbai', 40000),
            ('Saumya', 32, 'Delhi', 35000),
            ('Saumya', 32, 'Delhi', 30000),
            ('Saumya', 32, 'Mumbai', 20000),
            ('Aaditya', 40, 'Dehradun', 24000),
            ('Seema', 32, 'Delhi', 70000)
            ]
  
# Create a DataFrame
df = pd.DataFrame(employees,
                  columns = ['Name', 'Age'
                             'City', 'Salary'])
  
# Print complete details 
# about the data frame
df.info()


Output:

summary of the dataframe including datatypes

RELATED ARTICLES

Most Popular

Recent Comments