Saturday, December 28, 2024
Google search engine
HomeData Modelling & AIGenerate sequence with equal sum of adjacent integers

Generate sequence with equal sum of adjacent integers

Given an integer N, find a sequence of N integers such that the sum of all integers in the sequence is equal to the sum of any two adjacent integers in the sequence.

Examples:

Input: N = 4
Output: 1 -1 1 -1
Explanation: Total sum of the four integers is 0 and the sum of any two adjacent integers is also 0.

Input: N = 5
Output: 1 -2 1 -2 1
Explanation: Total sum of the four integers is -1 and the sum of any two adjacent integers is also -1.

Approach: To solve the problem follow the below idea:

  • For even n, we can use the array [-1, 1, -1, 1, …, -1, 1] as a solution. This array has a length of n, and the sum of any two adjacent elements is 0, as well as the sum of the whole array.
  • For odd n, we can construct an array s of length n using two fixed values a and b, such that si-1 = si+1  for i = 2, 3, …n-1. Specifically, we can set s1 = a and s2 = b, and then create the array s = [a, b, a, b, …, a, b, a]. We can then solve for ‘a’ and ‘b’ using the fact that the sum of any two adjacent elements and the sum of the whole array must be equal.
  • If we let k be a positive integer such that n = 2k+1, then we can find values for ‘a’ and ‘b’ that satisfy the conditions. Specifically, we can set a = k-1 and b = -k, which produces the array [k-1, -k, k-1, -k, …, k-1, -k, k-1]. This array has a length of n, and the sum of any two adjacent elements is k-1-k = -1, as well as the sum of the whole array being k(k-1)-(k-1)k = 0.
  • However, there is no solution for n = 3, as a = 0 and b = 0 do not satisfy the conditions. In general, the array we constructed will not work if a or b is equal to 0. Therefore, we must have k ≥ 2 to ensure that both a and b are nonzero.
  • Overall, this approach shows that if there is a solution for even n, then there is a solution for odd n greater than or equal to 5.

Follow the steps to solve the problem:

  • Initialize an integer variable ‘num’ with the value N/2.
  • If N is even print 1, -1, ………, 1, -1
  • If N is odd :
    • iterate through the sequence of integers from 1 to N.
    • If i is odd, print -num, otherwise print num-1.

Below is the implementation for the above approach:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
using namespace std;
 
// Function to solve the problem
void solve(int n)
{
 
    // If n is odd
    if (n % 2) {
 
        // Calculate the number to be
        // added and subtracted
        // alternatively
        int num = n / 2;
 
        // Iterate through the sequence
        // and print the values
        for (int i = 0; i < n; i++) {
            if (i % 2)
 
                // If i is odd, print
                // the negative number
                cout << -num << " ";
 
            // Otherwise, print the
            // positive number
            else
                cout << num - 1 << " ";
        }
 
        // Print a newline character
        // at the end
        cout << endl;
    }
 
    // If n is even
    else {
 
        // Iterate through the sequence
        // and print the values
        for (int i = 0; i < n; i++) {
 
            // If i is odd, print -1
            if (i % 2)
                cout << -1 << " ";
 
            // Otherwise, print 1
            else
                cout << 1 << " ";
        }
 
        // Print a newline character
        // at the end
        cout << endl;
    }
}
 
// Driver function
int main()
{
    int n = 9;
 
    // Call the solve function with n = 9
    solve(9);
}


Java




// JAVA code for the above approach:
 
public class GFG {
    // Function to solve the problem
    public static void solve(int n) {
        // If n is odd
        if (n % 2 == 1) {
            // Calculate the number to be added and
           // subtracted alternatively
            int num = n / 2;
 
            // Iterate through the sequence and print the values
            for (int i = 0; i < n; i++) {
                if (i % 2 == 1)
                    // If i is odd, print the negative number
                    System.out.print(-num + " ");
                else
                    // Otherwise, print the positive number
                    System.out.print(num - 1 + " ");
            }
            // Print a newline character at the end
            System.out.println();
        }
        // If n is even
        else {
            // Iterate through the sequence and print the values
            for (int i = 0; i < n; i++) {
                // If i is odd, print -1
                if (i % 2 == 1)
                    System.out.print(-1 + " ");
                // Otherwise, print 1
                else
                    System.out.print(1 + " ");
            }
            // Print a newline character at the end
            System.out.println();
        }
    }
 
    // Driver function
    public static void main(String[] args) {
        int n = 9;
 
        // Call the solve function with n = 9
        solve(9);
    }
}
 
 
// this code is contributed by rambabuguphka


Python3




def solve(n):
    # If n is odd
    if n % 2:
        # Calculate the number to be added and subtracted alternatively
        num = n // 2
 
        # Iterate through the sequence and print the values
        for i in range(n):
            if i % 2:
                # If i is odd, print the negative number
                print(-num, end=" ")
            else:
                # Otherwise, print the positive number
                print(num - 1, end=" ")
 
        # Print a newline character at the end
        print()
 
    # If n is even
    else:
        # Iterate through the sequence and print the values
        for i in range(n):
            # If i is odd, print -1
            if i % 2:
                print(-1, end=" ")
            # Otherwise, print 1
            else:
                print(1, end=" ")
 
        # Print a newline character at the end
        print()
 
 
# Driver function
if __name__ == "__main__":
    n = 9
 
    # Call the solve function with n = 9
    solve(9)
 
# This code is contributed by shivamgupta310570


C#




using System;
 
public class GFG
{
    // Function to solve the problem
    static void Solve(int n)
    {
        // If n is odd
        if (n % 2 != 0)
        {
            // Calculate the number to be
            // added and subtracted
            // alternatively
            int num = n / 2;
 
            // Iterate through the sequence
            // and print the values
            for (int i = 0; i < n; i++)
            {
                if (i % 2 != 0)
 
                    // If i is odd, print
                    // the negative number
                    Console.Write(-num + " ");
 
                // Otherwise, print the
                // positive number
                else
                    Console.Write(num - 1 + " ");
            }
 
            // Print a newline character
            // at the end
            Console.WriteLine();
        }
 
        // If n is even
        else
        {
            // Iterate through the sequence
            // and print the values
            for (int i = 0; i < n; i++)
            {
                // If i is odd, print -1
                if (i % 2 != 0)
                    Console.Write(-1 + " ");
 
                // Otherwise, print 1
                else
                    Console.Write(1 + " ");
            }
 
            // Print a newline character
            // at the end
            Console.WriteLine();
        }
    }
 
    // Driver function
    public static void Main(string[] args)
    {
        int n = 9;
 
        // Call the solve function with n = 9
        Solve(n);
    }
}
 
// This code is contributed by akshitaguprzj3


Javascript




// Function to solve the problem
function solve(n) {
 
    // If n is odd
    if (n % 2) {
     
        // Calculate the number to be
        // added and subtracted
        // alternatively
        let num = Math.floor(n / 2);
         
        // Iterate through the sequence
        // and print the values
        for (let i = 0; i < n; i++) {
            if (i % 2)
                // If i is odd, print
                // the negative number
                console.log(-num + " ");
             
            // Otherwise, print the
            // positive number
            else
                console.log(num - 1 + " ");
        }
         
        // Print a newline character
        // at the end
        console.log();
    }
     
    // If n is even
    else {
     
        // Iterate through the sequence
        // and print the values
        for (let i = 0; i < n; i++) {
         
            // If i is odd, print -1
            if (i % 2)
                console.log(-1 + " ");
                 
            // Otherwise, print 1
            else
                console.log(1 + " ");
        }
         
        // Print a newline character
        // at the end
        console.log();
    }
}
 
// Driver function
let n = 9;
solve(9);


Output

3 -4 3 -4 3 -4 3 -4 3 

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
19 Sep, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments