Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIGenerate original array from difference between every two consecutive elements

Generate original array from difference between every two consecutive elements

Given N – 1 differences between two consecutive elements of an array containing N numbers which are in range of 1 to N. The task is to determine the original array using the given differences. If possible print the array, else print -1.
Examples: 
 

Input: diff[] = {2, -3, 2} 
Output: arr[] = {2, 4, 1, 3} 
4 – 2 = 2 
1 – 4 = -3 
3 – 1 = 2
Input: diff[] = {2, 2, 2} 
Output: -1

Approach: Since we want to generate permutations in the range [1, n] and each digit should occur only once. Take for example, 
 

arr[] = {2, -3, 2} 
Here, P2 – P1 = 2, P3 – P2 = -3, P4 – P3 = 2
Let P1 = x then P2 = x + 2, P3 = P2 – 3 = x + 2 – 3 = x – 1, P4 = P3 + 2 = x – 1 + 2 = x + 1. 
So, P1 = x, P2 = x + 2, P3 = x – 1, P4 = x + 1.
Now since we want a permutation from 1 to n, therefore the P[i]’s we get above must also satisfy the condition. Since the value must be satisfied for each and every x, hence for our simplicity we take x = 0. 
Now, P1 = 0, P2 = 2, P3 = -1, P4 = 1.

We will sort the p[i]’s, after sorting the consecutive difference between each element must be equal to 1. If at any index we encounter an element p[i] such that p[i] – p[i – 1] != 1 then it is not possible to generate the permutation. To generate the final permutation we will keep track of indices, we can use map or unordered_map to do so.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the required permutation
void findPerm(int n, vector<int>& differences)
{
    vector<int> ans;
    ans.clear();
    ans.push_back(0);
 
    // Take x = 0 for simplicity
    int x = 0;
 
    // Calculate all the differences
    // and store it in a vector
    for (int i = 0; i <= n - 2; ++i) {
        int diff = differences[i];
        x = x + diff;
        ans.push_back(x);
    }
 
    // Preserve the original array
    vector<int> anss = ans;
    sort(ans.begin(), ans.end());
    int flag = -1;
 
    // Check if all the consecutive elements
    // have difference = 1
    for (int i = 1; i <= n - 1; ++i) {
        int res = ans[i] - ans[i - 1];
        if (res != 1) {
            flag = 0;
        }
    }
 
    // If consecutive elements don't have
    // difference 1 at any position then
    // the answer is impossible
    if (flag == 0) {
        cout << -1;
        return;
    }
 
    // Else store the indices and values
    // at those indices in a map
    // and finainty print them
    else {
        unordered_map<int, int> mpp;
        mpp.clear();
        int j = 1;
        vector<int> value_at_index;
        for (auto& x : ans) {
            mpp[x] = j;
            ++j;
        }
        for (auto& x : anss) {
            value_at_index.push_back(mpp[x]);
        }
        for (auto& x : value_at_index) {
            cout << x << " ";
        }
        cout << endl;
    }
}
 
// Driver code
int main()
{
    vector<int> differences;
    differences.push_back(2);
    differences.push_back(-3);
    differences.push_back(2);
    int n = differences.size() + 1;
    findPerm(n, differences);
 
    return 0;
}


Java




// Java program to implement the above approach
import java.util.*;
class GFG
{
 
// Function to print the required permutation
static void findPerm(int n, Vector<Integer> differences)
{
    Vector<Integer> ans = new Vector<Integer>();
    ans.clear();
    ans.add(0);
 
    // Take x = 0 for simplicity
    int x = 0;
 
    // Calculate all the differences
    // and store it in a vector
    for (int i = 0; i <= n - 2; ++i)
    {
        int diff = differences.get(i);
        x = x + diff;
        ans.add(x);
    }
 
    // Preserve the original array
    Vector<Integer> anss = new Vector<Integer>();
    for(Integer obj:ans)
        anss.add(obj);
         
    Collections.sort(ans);
    int flag = -1;
 
    // Check if all the consecutive elements
    // have difference = 1
    for (int i = 1; i <= n - 1; ++i)
    {
        int res = ans.get(i) - ans.get(i - 1);
        if (res != 1)
        {
            flag = 0;
        }
    }
 
    // If consecutive elements don't have
    // difference 1 at any position then
    // the answer is impossible
    if (flag == 0)
    {
        System.out.print(-1);
        return;
    }
 
    // Else store the indices and values
    // at those indices in a map
    // and finainty print them
    else
    {
        Map<Integer,Integer> mpp = new HashMap<>();
        mpp.clear();
        int j = 1;
        Vector<Integer> value_at_index = new Vector<Integer>();
        for (Integer x1 : ans)
        {
            mpp.put(x1, j);
            ++j;
        }
        for (Integer x2 : anss)
        {
            value_at_index.add(mpp.get(x2));
        }
        for (Integer x3 : value_at_index)
        {
            System.out.print(x3 + " ");
        }
        System.out.println();
    }
}
 
// Driver code
public static void main(String[] args)
{
    Vector<Integer> differences = new Vector<Integer>();
    differences.add(2);
    differences.add(-3);
    differences.add(2);
    int n = differences.size() + 1;
    findPerm(n, differences);
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
 
# Function to print the required permutation
def findPerm(n, differences):
    ans = []
    ans.append(0)
 
    # Take x = 0 for simplicity
    x = 0
 
    # Calculate all the differences
    # and store it in a vector
    for i in range(n - 1):
        diff = differences[i]
        x = x + diff
        ans.append(x)
 
    # Preserve the original array
    anss = ans
    ans = sorted(ans)
    flag = -1
 
    # Check if all the consecutive elements
    # have difference = 1
    for i in range(1, n):
        res = ans[i] - ans[i - 1]
        if (res != 1):
            flag = 0
 
    # If consecutive elements don't have
    # difference 1 at any position then
    # the answer is impossible
    if (flag == 0):
        print("-1")
        return
 
    # Else store the indices and values
    # at those indices in a map
    # and infinity print them
    else:
        mpp = dict()
        j = 1
        value_at_index = []
        for x in ans:
            mpp[x] = j
            j += 1
 
        for x in anss:
            value_at_index.append(mpp[x])
 
        for x in value_at_index:
            print(x, end = " ")
        print()
 
# Driver code
differences=[]
differences.append(2)
differences.append(-3)
differences.append(2)
n = len(differences) + 1
findPerm(n, differences)
 
# This code is contributed by mohit kumar


C#




// C# program to implement the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to print the required permutation
static void findPerm(int n, List<int> differences)
{
    List<int> ans = new List<int>();
    ans.Clear();
    ans.Add(0);
 
    // Take x = 0 for simplicity
    int x = 0;
 
    // Calculate all the differences
    // and store it in a vector
    for(int i = 0; i <= n - 2; ++i)
    {
        int diff = differences[i];
        x = x + diff;
        ans.Add(x);
    }
 
    // Preserve the original array
    List<int> anss = new List<int>();
    foreach(int obj in ans)
        anss.Add(obj);
         
    ans.Sort();
    int flag = -1;
 
    // Check if all the consecutive elements
    // have difference = 1
    for(int i = 1; i <= n - 1; ++i)
    {
        int res = ans[i] - ans[i - 1];
        if (res != 1)
        {
            flag = 0;
        }
    }
 
    // If consecutive elements don't have
    // difference 1 at any position then
    // the answer is impossible
    if (flag == 0)
    {
        Console.Write(-1);
        return;
    }
 
    // Else store the indices and values
    // at those indices in a map
    // and finainty print them
    else
    {
        Dictionary<int,
                   int> mpp = new Dictionary<int,
                                             int>();
        mpp.Clear();
        int j = 1;
         
        List<int> value_at_index = new List<int>();
        foreach (int x1 in ans)
        {
            mpp.Add(x1, j);
            ++j;
        }
         
        foreach (int x2 in anss)
        {
            value_at_index.Add(mpp[x2]);
        }
         
        foreach (int x3 in value_at_index)
        {
            Console.Write(x3 + " ");
        }
        Console.WriteLine();
    }
}
 
// Driver code
public static void Main(String[] args)
{
    List<int> differences = new List<int>();
    differences.Add(2);
    differences.Add(-3);
    differences.Add(2);
     
    int n = differences.Count + 1;
     
    findPerm(n, differences);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
// Javascript program to implement the above approach
     
    // Function to print the required permutation
function findPerm(n,differences)
{
    let ans = [];   
    ans.push(0);
   
    // Take x = 0 for simplicity
    let x = 0;
   
    // Calculate all the differences
    // and store it in a vector
    for (let i = 0; i <= n - 2; ++i)
    {
        let diff = differences[i];
        x = x + diff;
        ans.push(x);
    }
   
    // Preserve the original array
    let anss = [];
    for(let obj = 0; obj < ans.length; obj++)
        anss.push(ans[obj]);
           
    ans.sort(function(a,b){return a-b;});
    let flag = -1;
   
    // Check if all the consecutive elements
    // have difference = 1
    for (let i = 1; i <= n - 1; ++i)
    {
        let res = ans[i] - ans[i - 1];
        if (res != 1)
        {
            flag = 0;
        }
    }
   
    // If consecutive elements don't have
    // difference 1 at any position then
    // the answer is impossible
    if (flag == 0)
    {
        document.write(-1);
        return;
    }
   
    // Else store the indices and values
    // at those indices in a map
    // and finainty print them
    else
    {
        let mpp = new Map();
         
        let j = 1;
        let value_at_index = [];
        for (let x1 = 0; x1 < ans.length; x1++)
        {
            mpp.set(ans[x1], j);
            ++j;
        }
        for (let x2 = 0; x2 < anss.length; x2++)
        {
            value_at_index.push(mpp.get(anss[x2]));
        }
        for (let x3 = 0; x3 < value_at_index.length; x3++)
        {
            document.write(value_at_index[x3] + " ");
        }
        document.write("<br>");
    }
}
 
    // Driver code
    let differences =[];
    differences.push(2);
    differences.push(-3);
    differences.push(2);
    let n = differences.length + 1;
    findPerm(n, differences);
     
// This code is contributed by unknown2108.
</script>


Output: 

2 4 1 3

 

Time Complexity: O(n*log(n))
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments