Given an integer N and an arr1[], of (N – 1) integers, the task is to find the sequence arr2[] of N integers in the range [1, N] such that arr1[i] = arr2[i+1] – arr2[i]. The integers in sequence arr1[] lies in range [-N, N].
Examples:
Input: N = 3, arr1[] = {-2, 1}
Output: arr2[] = {3, 1, 2}
Explanation:
arr2[1] – arr2[0] = (1 – 3) = -2 = arr1[0]
arr2[2] – arr2[1] = (2 – 1) = 1 = arr1[1]
Input: N = 5, arr1 = {1, 1, 1, 1, 1}
Output: arr2 = {1, 2, 3, 4, 5}
Explanation:
arr2[1] – arr2[0] = (2 – 1) = 1 = arr1[0]
arr2[2] – arr2[1] = (3 – 2) = 1 = arr1[1]
arr2[3] – arr2[2] = (4 – 3) = 1 = arr1[2]
arr2[4] – arr2[3] = (5 – 4) = 1 = arr1[3]
Approach:
Follow the steps to solve the problem:
- Assume the first element of arr2[] to be X.
- The next element will be X + arr1[0].
- The rest of the elements of arr2[] can be represented, w.r.t X.
- It is known that the sequence arr2[] can contain integers in the range [1, N]. So the minimum possible integer would be 1.
- The minimum number of the arr2[] can be found out in terms of X, and equate it with 1 to find the value of X.
- Finally using the values of X, all the other numbers in arr2[] can be found out.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the sequence void find_seq( int arr[], int m, int n) { int b[n]; int x = 0; // initializing 1st element b[0] = x; // Creating sequence in // terms of x for ( int i = 0; i < n - 1; i++) { b[i + 1] = x + arr[i] + b[i]; } int mn = n; // Finding min element for ( int i = 0; i < n; i++) { mn = min(mn, b[i]); } // Finding value of x x = 1 - mn; // Creating original sequence for ( int i = 0; i < n; i++) { b[i] += x; } // Output original sequence for ( int i = 0; i < n; i++) { cout << b[i] << " " ; } cout << endl; } // Driver function int main() { int N = 3; int arr[] = { -2, 1 }; int M = sizeof (arr) / sizeof ( int ); find_seq(arr, M, N); return 0; } |
Java
// Java implementation of the above approach class GFG{ // Function to find the sequence static void find_seq( int arr[], int m, int n) { int b[] = new int [n]; int x = 0 ; // Initializing 1st element b[ 0 ] = x; // Creating sequence in // terms of x for ( int i = 0 ; i < n - 1 ; i++) { b[i + 1 ] = x + arr[i] + b[i]; } int mn = n; // Finding min element for ( int i = 0 ; i < n; i++) { mn = Math.min(mn, b[i]); } // Finding value of x x = 1 - mn; // Creating original sequence for ( int i = 0 ; i < n; i++) { b[i] += x; } // Output original sequence for ( int i = 0 ; i < n; i++) { System.out.print(b[i] + " " ); } System.out.println(); } // Driver code public static void main (String[] args) { int N = 3 ; int arr[] = new int []{ - 2 , 1 }; int M = arr.length; find_seq(arr, M, N); } } // This code is contributed by Pratima Pandey |
Python3
# Python3 program for the above approach # Function to find the sequence def find_seq(arr, m, n): b = [] x = 0 # Initializing 1st element b.append(x) # Creating sequence in # terms of x for i in range (n - 1 ): b.append(x + arr[i] + b[i]) mn = n # Finding min element for i in range (n): mn = min (mn, b[i]) # Finding value of x x = 1 - mn # Creating original sequence for i in range (n): b[i] + = x # Output original sequence for i in range (n): print (b[i], end = ' ' ) print () # Driver code if __name__ = = '__main__' : N = 3 arr = [ - 2 , 1 ] M = len (arr) find_seq(arr, M, N) # This code is contributed by rutvik_56 |
C#
// C# implementation of the above approach using System; class GFG{ // Function to find the sequence static void find_seq( int []arr, int m, int n) { int []b = new int [n]; int x = 0; // Initializing 1st element b[0] = x; // Creating sequence in // terms of x for ( int i = 0; i < n - 1; i++) { b[i + 1] = x + arr[i] + b[i]; } int mn = n; // Finding min element for ( int i = 0; i < n; i++) { mn = Math.Min(mn, b[i]); } // Finding value of x x = 1 - mn; // Creating original sequence for ( int i = 0; i < n; i++) { b[i] += x; } // Output original sequence for ( int i = 0; i < n; i++) { Console.Write(b[i] + " " ); } Console.WriteLine(); } // Driver code public static void Main(String[] args) { int N = 3; int []arr = new int []{ -2, 1 }; int M = arr.Length; find_seq(arr, M, N); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program for the above approach // Function to find the sequence function find_seq(arr,m, n) { let b = new Array(n); let x = 0; // initializing 1st element b[0] = x; // Creating sequence in // terms of x for (let i = 0; i < n - 1; i++) { b[i + 1] = x + arr[i] + b[i]; } let mn = n; // Finding min element for (let i = 0; i < n; i++) { mn = Math.min(mn, b[i]); } // Finding value of x x = 1 - mn; // Creating original sequence for (let i = 0; i < n; i++) { b[i] += x; } // Output original sequence for (let i = 0; i < n; i++) { document.write(b[i] + " " ); } document.write( "<br>" ); } // Driver function let N = 3; let arr = [ -2, 1 ]; let M = arr.length; find_seq(arr, M, N); // This code is contributed by Mayank Tyagi </script> |
3 1 2
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!