Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIGenerate and print first N prime numbers

Generate and print first N prime numbers

Given a number N, the task is to print the first N prime numbers.

Examples: 

Input: N = 4
Output: 2, 3, 5, 7

Input: N = 1
Output: 2

Approach 1: 

The problem can be solved based on the following idea:

Start iterating from i = 2, till N prime numbers are found. For each i check if it is a prime or not and update the count of primes found till now.

Follow the steps mentioned below to implement the idea:

  • Create a counter variable (say X = 0) to keep count of primes found till now and an iterator (say i) to iterate through the positive integers starting from 2.
  • Iterate till X becomes N:
    • Check if i is a prime or not.
    • If it is a prime, print i and increase the value of X, otherwise, keep X unchanged.
    • Increment the value of i by 1.

Below is the implementation of the above idea:

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate first n primes
void generatePrime(int n)
{
    int X = 0, i = 2;
    bool flag;
    while(X < n){
        flag = true;
        for(int j = 2; j <= sqrt(i); j++){
            if (i%j == 0){
                flag = false;
                break;
            }
        }
        if(flag){
            cout << i << " ";
            X++;
        }
        i++;
    }
    cout << endl;
}
 
// Driver code
int main()
{
    // Test Case 1
    int N = 4;
 
    // Function call
    generatePrime(N);
   
    // Test Case 2
    N = 1;
   
    // Function call
    generatePrime(N);
   
    return 0;
}


Java




// Java code to implement the approach
 
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
     
    // Function to generate first n primes
    static void generatePrime(int n)
    {
    int X = 0, i = 2;
    boolean flag;
    while(X < n){
        flag = true;
        for(int j = 2; j <= (double)Math.sqrt(i); j++){
            if (i%j == 0){
                flag = false;
                break;
            }
        }
        if(flag){
            System.out.print( i + " ");
            X++;
        }
        i++;
    }
    System.out.println();
}
 
    // Driver code
    public static void main(String[] args)
    {
        // Test Case 1
    int N = 4;
 
    // Function call
    generatePrime(N);
   
    // Test Case 2
    N = 1;
   
    // Function call
    generatePrime(N);
    }
 
 
}


Python3




# Python code to implement the approach
 
import math
 
# Function to generate first n primes
def generatePrime(n):
    X = 0
    i = 2
    flag = False
    while(X < n):
        flag = True
        for j in range(2, math.floor(math.sqrt(i)) + 1):
            if (i%j == 0):
                flag = False
                break
        if(flag):
            print(i, end=" ")
            X+=1
        i+=1
    print()
     
# Driver code
 
# Test Case 1
N = 4
 
# Function call
generatePrime(N)
 
# Test Case 2
N = 1
 
# Function call
generatePrime(N)
 
#This code is contributed by Shubham Singh


C#




using System;
using System.Linq;
 
class GFG
{
    // Function to generate first n primes
    static void GeneratePrime(int n)
    {
        int X = 0, i = 2;
        bool flag;
        while (X < n)
        {
            flag = true;
            for (int j = 2; j <= Math.Sqrt(i); j++)
            {
                if (i % j == 0)
                {
                    flag = false;
                    break;
                }
            }
            if (flag)
            {
                Console.Write(i + " ");
                X++;
            }
            i++;
        }
        Console.WriteLine();
    }
 
    // Driver code
    static void Main()
    {
        // Test Case 1
        int N = 4;
 
        // Function call
        GeneratePrime(N);
 
        // Test Case 2
        N = 1;
 
        // Function call
        GeneratePrime(N);
    }
}
 
// code by ksam24000


Javascript




// JS code to implement the approach
 
// Function to generate first n primes
function generatePrime( n)
{
    let X = 0, i = 2;
    let flag;
    while(X < n){
        flag = true;
        for(let j = 2; j <= Math.sqrt(i); j++){
            if (i%j == 0){
                flag = false;
                break;
            }
        }
        if(flag){
            console.log(i);
            X++;
        }
        i++;
    }
    console.log("\n");
}
 
// Driver code
// Test Case 1
let N = 4;
 
// Function call
generatePrime(N);
 
// Test Case 2
N = 1;
 
// Function call
generatePrime(N);
   
// This code is contributed by ratiagrawal.


Output

2 3 5 7 
2 

Time Complexity: O(X * log X) where X is the largest prime
Auxiliary Space: O(1)

Approach 2:

Below code also generates the first N prime numbers, but it is more efficient than the previous code because it only checks odd numbers after 2, and only checks them for divisibility by previously found prime numbers. This reduces the number of iterations required in the loop, making the code faster for large values of N.

Below is the implementation of the above algorithm:

C++




// CPP program to generate and print first N prime numbers
// using above approach
 
#include <bits/stdc++.h>
using namespace std;
 
void generateprime(int N){
    vector<int> primes; // Initialize an empty vector to
                        // store prime numbers
    primes.push_back(2); // Add 2 as the first prime number
    int num = 3; // Start checking for prime numbers from 3
    while (primes.size() < N) { // Keep searching until we
                                // find N prime numbers
        bool is_prime
            = true; // Assume the current number is prime
                    // until proven otherwise
        for (int i = 0; i < primes.size(); i++) {
            if (num % primes[i]
                == 0) { // If the current number is
                        // divisible by any previously found
                        // prime numbers
                is_prime = false; // Then it is not a prime
                                  // number
                break; // Exit the loop since we've already
                       // proven it's not prime
            }
        }
        if (is_prime) { // If the current number is still
                        // prime after checking all
                        // previously found prime numbers
            primes.push_back(num); // Add it to our vector
                                   // of prime numbers
        }
        num += 2; // Check the next odd number (since even
                  // numbers other than 2 are not prime)
    }
 
    for (int i = 0; i < primes.size();
         i++) { // Print the first N prime numbers
        cout << primes[i] << " ";
    }
    cout << endl;
}
int main()
{
 
    // Test Case 1
    int n = 4;
    generateprime(n);
 
    // Test Case 2
    n = 1;
    generateprime(n);
    return 0;
}
 
// This code is contributed by Susobhan Akhuli


Java




import java.util.*;
 
public class Main {
public static void generateprime(int N) {
List<Integer> primes = new ArrayList<>(); // Initialize an empty list to store prime numbers
primes.add(2); // Add 2 as the first prime number
int num = 3; // Start checking for prime numbers from 3
while (primes.size() < N) { // Keep searching until we find N prime numbers
boolean is_prime = true; // Assume the current number is prime until proven otherwise
for (int i = 0; i < primes.size(); i++) {
if (num % primes.get(i) == 0) { // If the current number is divisible by any previously found prime numbers
is_prime = false; // Then it is not a prime number
break; // Exit the loop since we've already proven it's not prime
}
}
if (is_prime) { // If the current number is still prime after checking all previously found prime numbers
primes.add(num); // Add it to our list of prime numbers
}
num += 2; // Check the next odd number (since even numbers other than 2 are not prime)
}
for (int i = 0; i < primes.size(); i++) { // Print the first N prime numbers
System.out.print(primes.get(i) + " ");
}
System.out.println();
}
public static void main(String[] args) {
// Test Case 1
int n = 4;
generateprime(n);
// Test Case 2
n = 1;
generateprime(n);
}
}


Python3




def generateprime(N):
    primes = [2# Initialize an empty list to store prime numbers and add 2 as the first prime number
    num = 3  # Start checking for prime numbers from 3
    while len(primes) < N:  # Keep searching until we find N prime numbers
        is_prime = True  # Assume the current number is prime until proven otherwise
        for i in range(len(primes)):
            if num % primes[i] == 0# If the current number is divisible by any previously found prime numbers
                is_prime = False  # Then it is not a prime number
                break  # Exit the loop since we've already proven it's not prime
        if is_prime:  # If the current number is still prime after checking all previously found prime numbers
            primes.append(num)  # Add it to our list of prime numbers
        num += 2  # Check the next odd number (since even numbers other than 2 are not prime)
 
    for i in range(len(primes)):  # Print the first N prime numbers
        print(primes[i], end=" ")
    print()
 
# Test Case 1
n = 4
generateprime(n)
 
# Test Case 2
n = 1
generateprime(n)


C#




// C# program to generate and print first N prime numbers
// using above approach
 
using System;
using System.Collections.Generic;
 
public class GFG {
    public static void Main()
    {
        // Test Case 1
        int n = 4;
        GeneratePrime(n);
 
        // Test Case 2
        n = 1;
        GeneratePrime(n);
    }
 
    public static void GeneratePrime(int n)
    {
        List<int> primes
            = new List<int>(); // Initialize an empty list
                               // to store prime numbers
        primes.Add(2); // Add 2 as the first prime number
        int num
            = 3; // Start checking for prime numbers from 3
        while (primes.Count < n) // Keep searching until we
                                 // find N prime numbers
        {
            bool isPrime
                = true; // Assume the current number is
                        // prime until proven otherwise
            for (int i = 0; i < primes.Count; i++) {
                if (num % primes[i]
                    == 0) // If the current number is
                          // divisible by any previously
                          // found prime numbers
                {
                    isPrime = false; // Then it is not a
                                     // prime number
                    break; // Exit the loop since we've
                           // already proven it's not prime
                }
            }
            if (isPrime) // If the current number is still
                         // prime after checking all
                         // previously found prime numbers
            {
                primes.Add(num); // Add it to our list
                                 // of prime numbers
            }
            num += 2; // Check the next odd number (since
                      // even numbers other than 2 are not
                      // prime)
        }
 
        for (int i = 0; i < primes.Count;
             i++) // Print the first N prime numbers
        {
            Console.Write(primes[i] + " ");
        }
        Console.WriteLine();
    }
}


Javascript




function generateprime(N)
{
    let primes = []; // Initialize an empty array to store prime numbers
    primes.push(2); // Add 2 as the first prime number
    let num = 3; // Start checking for prime numbers from 3
    while (primes.length < N) { // Keep searching until we
                                // find N prime numbers
        let is_prime = true; // Assume the current number is
                             // prime until proven otherwise
        for (let i = 0; i < primes.length; i++) {
            if (num % primes[i] == 0) { // If the current number is
                                           // divisible by any previously
                                        // found prime numbers
 
                is_prime = false; // Then it is not a prime
                                  // number
                break; // Exit the loop since we've already
                       // proven it's not prime
            }
        }
        if (is_prime) { // If the current number is still
                        // prime after checking all
                        // previously found prime numbers
            primes.push(num); // Add it to our array of
                              // prime numbers
        }
        num += 2; // Check the next odd number (since even
                  // numbers other than 2 are not prime)
    }
    for (let i = 0; i < primes.length;
         i++) { // Print the first N prime numbers
        console.log(primes[i] + " ");
    }
    console.log("<br>");
}
 
// Test Case 1
let n = 4;
generateprime(n);
 
// Test Case 2
n = 1;
generateprime(n);
 
// This code is contributed by Susobhan Akhuli


Output

2 3 5 7 
2 

Time Complexity: O(N*log(N))
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments