Thursday, November 20, 2025
HomeData Modelling & AIGenerate an array of size K which satisfies the given conditions

Generate an array of size K which satisfies the given conditions

Given two integers N and K, the task is to generate an array arr[] of length K such that:

  1. arr[0] + arr[1] + … + arr[K – 1] = N.
  2. arr[i] > 0 for 0 ? i < K.
  3. arr[i] < arr[i + 1] ? 2 * arr[i] for 0 ? i < K – 1.

If there are multiple answers find any one of them, otherwise, print -1.
 

Examples: 

Input: N = 26, K = 6 
Output: 1 2 4 5 6 8 
The generated array satisfies all of the given conditions.
Input: N = 8, K = 3 
Output: -1  

Approach: Let r = n – k * (k + 1) / 2. If r < 0 then answer is -1 already. Otherwise, let’s construct the array arr[], where all arr[i] are floor(r / k) except for rightmost r % k values, they are ceil(r / k)
It is easy to see that the sum of this array is r, it is sorted in non-decreasing order and the difference between the maximum and the minimum element is not greater than 1. 
Let’s add 1 to arr[1], 2 to arr[2], and so on (this is what we subtract from n at the beginning). 
Then, if r != k – 1 or k = 1 then arr[] is our required array. Otherwise, we got some array of kind 1, 3, ….., arr[k]. For k = 2 or k = 3, there is no answer for this case. Otherwise, we can subtract 1 from arr[2] and add it to arr[k] and this answer will be correct.
 

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate and print
// the required array
void generateArray(int n, int k)
{
 
    // Initializing the array
    vector<int> array(k, 0);
 
    // Finding r (from above approach)
    int remaining = n - int(k * (k + 1) / 2);
 
    // If r<0
    if (remaining < 0)
        cout << ("NO");
 
    int right_most = remaining % k;
 
    // Finding ceiling and floor values
    int high = ceil(remaining / (k * 1.0));
    int low = floor(remaining / (k * 1.0));
 
    // Fill the array with ceiling values
    for (int i = k - right_most; i < k; i++)
        array[i]= high;
 
    // Fill the array with floor values
    for (int i = 0; i < (k - right_most); i++)
        array[i]= low;
 
    // Add 1, 2, 3, ... with corresponding values
    for (int i = 0; i < k; i++)
        array[i] += i + 1;
 
    if (k - 1 != remaining or k == 1)
    {
        for(int u:array) cout << u << " ";
    }
     
    // There is no solution for below cases
    else if (k == 2 or k == 3)
        printf("-1\n");
    else
    {
 
        // Modify A[1] and A[k-1] to get
        // the required array
        array[1] -= 1;
        array[k - 1] += 1;
        for(int u:array) cout << u << " ";
    }
}
 
// Driver Code
int main()
{
    int n = 26, k = 6;
    generateArray(n, k);
    return 0;
}
 
// This code is contributed
// by Mohit Kumar


Java




// Java implementation of the approach
class GFG
{
 
// Function to generate and print
// the required array
static void generateArray(int n, int k)
{
 
    // Initializing the array
    int []array = new int[k];
 
    // Finding r (from above approach)
    int remaining = n - (k * (k + 1) / 2);
 
    // If r < 0
    if (remaining < 0)
        System.out.print("NO");
 
    int right_most = remaining % k;
 
    // Finding ceiling and floor values
    int high = (int) Math.ceil(remaining / (k * 1.0));
    int low = (int) Math.floor(remaining / (k * 1.0));
 
    // Fill the array with ceiling values
    for (int i = k - right_most; i < k; i++)
        array[i] = high;
 
    // Fill the array with floor values
    for (int i = 0; i < (k - right_most); i++)
        array[i] = low;
 
    // Add 1, 2, 3, ... with corresponding values
    for (int i = 0; i < k; i++)
        array[i] += i + 1;
 
    if (k - 1 != remaining || k == 1)
    {
        for(int u:array)
            System.out.print(u + " ");
    }
     
    // There is no solution for below cases
    else if (k == 2 || k == 3)
        System.out.printf("-1\n");
    else
    {
 
        // Modify A[1] and A[k-1] to get
        // the required array
        array[1] -= 1;
        array[k - 1] += 1;
        for(int u:array)
            System.out.print(u + " ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 26, k = 6;
    generateArray(n, k);
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
import sys
from math import floor, ceil
 
# Function to generate and print
# the required array
def generateArray(n, k):
 
    # Initializing the array
    array = [0] * k
     
    # Finding r (from above approach)
    remaining = n-int(k*(k + 1)/2)
 
    # If r<0
    if remaining<0:
        print("NO")
        sys.exit()
 
    right_most = remaining % k
 
    # Finding ceiling and floor values
    high = ceil(remaining / k)
    low = floor(remaining / k)
 
    # Fill the array with ceiling values
    for i in range(k-right_most, k):
        array[i]= high
 
    # Fill the array with floor values
    for i in range(k-right_most):
        array[i]= low
 
    # Add 1, 2, 3, ... with corresponding values
    for i in range(k):
        array[i]+= i + 1
 
    if k-1 != remaining or k == 1:
        print(*array)
        sys.exit()
 
    # There is no solution for below cases
    elif k == 2 or k == 3:
        print("-1")
        sys.exit()
    else:
 
        # Modify A[1] and A[k-1] to get
        # the required array
        array[1]-= 1
        array[k-1]+= 1
        print(*array)
        sys.exit()
 
# Driver Code
if __name__=="__main__":
    n, k = 26, 6
    generateArray(n, k)


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to generate and print
// the required array
static void generateArray(int n, int k)
{
 
    // Initializing the array
    int []array = new int[k];
 
    // Finding r (from above approach)
    int remaining = n - (k * (k + 1) / 2);
 
    // If r < 0
    if (remaining < 0)
        Console.Write("NO");
 
    int right_most = remaining % k;
 
    // Finding ceiling and floor values
    int high = (int) Math.Ceiling(remaining /
                                 (k * 1.0));
    int low = (int) Math.Floor(remaining /
                              (k * 1.0));
 
    // Fill the array with ceiling values
    for (int i = k - right_most; i < k; i++)
        array[i] = high;
 
    // Fill the array with floor values
    for (int i = 0;
             i < (k - right_most); i++)
        array[i] = low;
 
    // Add 1, 2, 3, ... with
    // corresponding values
    for (int i = 0; i < k; i++)
        array[i] += i + 1;
 
    if (k - 1 != remaining || k == 1)
    {
        foreach(int u in array)
            Console.Write(u + " ");
    }
     
    // There is no solution for below cases
    else if (k == 2 || k == 3)
        Console.Write("-1\n");
    else
    {
 
        // Modify A[1] and A[k-1] to get
        // the required array
        array[1] -= 1;
        array[k - 1] += 1;
        foreach(int u in array)
            Console.Write(u + " ");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 26, k = 6;
    generateArray(n, k);
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// javascript implementation of the approach   
// Function to generate and print
    // the required array
    function generateArray(n , k) {
 
        // Initializing the array
        var array = Array(k).fill(0);
 
        // Finding r (from above approach)
        var remaining = n - parseInt(k * (k + 1) / 2);
 
        // If r < 0
        if (remaining < 0)
            document.write("NO");
 
        var right_most = remaining % k;
 
        // Finding ceiling and floor values
        var high = parseInt( Math.ceil(remaining / (k * 1.0)));
        var low = parseInt( Math.floor(remaining / (k * 1.0)));
 
        // Fill the array with ceiling values
        for (i = k - right_most; i < k; i++)
            array[i] = high;
 
        // Fill the array with floor values
        for (i = 0; i < (k - right_most); i++)
            array[i] = low;
 
        // Add 1, 2, 3, ... with corresponding values
        for (i = 0; i < k; i++)
            array[i] += i + 1;
 
        if (k - 1 != remaining || k == 1) {
            for (var u = 0;u< array.length;u++)
                document.write(array[u] + " ");
        }
 
        // There is no solution for below cases
        else if (k == 2 || k == 3)
            document.write("-1");
        else {
 
            // Modify A[1] and A[k-1] to get
            // the required array
            array[1] -= 1;
            array[k - 1] += 1;
            for (var f = 0;f< array.length;f++)
                document.write(array[f] + " ");
        }
    }
 
    // Driver Code
     
        var n = 26, k = 6;
        generateArray(n, k);
 
// This code is contributed by todaysgaurav
</script>


Output: 

1 2 4 5 6 8

 

Time Complexity: O(K)

 Auxiliary Space: O(K)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32404 POSTS0 COMMENTS
Milvus
97 POSTS0 COMMENTS
Nango Kala
6776 POSTS0 COMMENTS
Nicole Veronica
11924 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11994 POSTS0 COMMENTS
Shaida Kate Naidoo
6904 POSTS0 COMMENTS
Ted Musemwa
7160 POSTS0 COMMENTS
Thapelo Manthata
6859 POSTS0 COMMENTS
Umr Jansen
6846 POSTS0 COMMENTS