Saturday, December 28, 2024
Google search engine
HomeLanguagesDynamic ProgrammingGenerate all possible combinations of at most X characters from a given...

Generate all possible combinations of at most X characters from a given array

Given an array arr[] consisting of N characters, the task is to generate all possible combinations of at most X elements ( 1 ? X ? N).

Examples:

Input: N = 3, X = 2, arr[] = {‘a’, ‘b’, ‘a’}
Output: a b c bc ca ab cb ac ba
Explanation: All possible combinations using 1 character is 3 {‘a’, ‘b’, ‘c’}. All possible combinations using 2 characters are {“bc” “ca” “ab” “cb” “ac” “ba”}.

Input: N = 3, X = 3, arr[] = {‘d’, ‘a’, ‘b’}
Output: d a b da ab bd ad ba db dab dba abd adb bda bad

Approach: The given problem can be solved using the Dynamic Programming approach. Follow the below steps to solve the problem:

  1. Generate all possible permutations that can be created with 1 character, which is the given array arr[].
  2. Store all permutations.
  3. Once stored, generate all possible permutations of 2 characters and store them.
  4. Once the last step is completed, discard all permutations of a single character.
  5. Iteratively, in the same way, calculate the permutations until X is reached.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate permutations of
// at most X elements from array arr[]
void differentFlagPermutations(int X,
                               vector<string> arr)
{
    vector<string> ml;
    ml = arr;
     
    for(int i = 0; i < ml.size(); i++)
    {
        cout << ml[i] << " ";
    }
 
    int count = ml.size();
   
    // Traverse all possible lengths
    for(int z = 0; z < X - 1; z++)
    {
         
        // Stores all combinations
        // of length z
        vector<string> tmp;
           
        // Traverse the array
        for(int i = 0; i < arr.size(); i++)
        {
            for(int k = 0; k < ml.size(); k++)
            {
                if (arr[i] != ml[k])
                {
                     
                    // Generate all
                    // combinations of length z
                    tmp.push_back(ml[k] + arr[i]);
                    count += 1;
                }
            }
        }    
         
        // Print all combinations of length z
        for(int i = 0; i < tmp.size(); i++)
        {
            cout << tmp[i] << " ";
        }
           
        // Replace all combinations of length z - 1
        // with all combinations of length z
        ml = tmp;
    }
}
 
// Driver Code
int main()
{
     
    // Given array
    vector<string> arr{ "c", "a", "b" };
     
    // Given X
    int X = 2;
       
    differentFlagPermutations(X, arr);
     
    return 0;
}
 
// This code is contributed by divyeshrabadiya07


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Function to generate permutations of
// at most X elements from array arr[]
static void differentFlagPermutations(int X,
                               String[] arr)
{
    String[] ml = arr;
     
    for(int i = 0; i < ml.length; i++)
    {
        System.out.print(ml[i] + " ");
    }
 
    int count = ml.length;
   
    // Traverse all possible lengths
    for(int z = 0; z < X - 1; z++)
    {
         
        // Stores all combinations
        // of length z
        Vector<String> tmp = new Vector<String>();
           
        // Traverse the array
        for(int i = 0; i < arr.length; i++)
        {
            for(int k = 0; k < ml.length; k++)
            {
                if (arr[i] != ml[k])
                {
                     
                    // Generate all
                    // combinations of length z
                    tmp.add(ml[k] + arr[i]);
                    count += 1;
                }
            }
        }    
         
        // Print all combinations of length z
        for(int i = 0; i < tmp.size(); i++)
        {
            System.out.print(tmp.get(i) + " ");
        }
           
        // Replace all combinations of length z - 1
        // with all combinations of length z
        ml = tmp.toArray(new String[tmp.size()]);;
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given array
    String []arr = { "c", "a", "b" };
     
    // Given X
    int X = 2;     
    differentFlagPermutations(X, arr);  
}
}
 
// This code is contributed by shikhasingrajput


Python3




# Python3 program for the above approach
 
# Function to generate permutations of
# at most X elements from array arr[]
def differentFlagPermutations(X, arr):
 
    ml = arr.copy()
 
    print(" ".join(ml), end =" ")
    count = len(ml)
 
    # Traverse all possible lengths
    for z in range(X-1):
         
        # Stores all combinations
        # of length z
        tmp = []
         
        # Traverse the array
        for i in arr:
            for k in ml:
                if i not in k:
                     
                    # Generate all
                    # combinations of length z
                    tmp.append(k + i)
                    count += 1
                     
        # Print all combinations of length z
        print(" ".join(tmp), end =" ")
         
        # Replace all combinations of length z - 1
        # with all combinations of length z
        ml = tmp
 
 
# Given array
arr = ['c', 'a', 'b']
 
# Given X
X = 2
 
differentFlagPermutations(X, arr)


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG
{
 
  // Function to generate permutations of
  // at most X elements from array arr[]
  static void differentFlagPermutations(int X, List<string> arr)
  {
    List<string> ml = new List<string>();
    ml = arr;
    for(int i = 0; i < ml.Count; i++)
    {
      Console.Write(ml[i] + " ");
    }
 
    int count = ml.Count;
 
    // Traverse all possible lengths
    for(int z = 0; z < X - 1; z++)
    {
 
      // Stores all combinations
      // of length z
      List<string> tmp = new List<string>();
 
      // Traverse the array
      for(int i = 0; i < arr.Count; i++)
      {
        for(int k = 0; k < ml.Count; k++)
        {
          if (arr[i] != ml[k])
          {
 
            // Generate all
            // combinations of length z
            tmp.Add(ml[k] + arr[i]);
            count += 1;
          }
        }
      }    
 
      // Print all combinations of length z
      for(int i = 0; i < tmp.Count; i++)
      {
        Console.Write(tmp[i] + " ");
      }
 
      // Replace all combinations of length z - 1
      // with all combinations of length z
      ml = tmp;
    }
  }
 
  // Driver code
  static void Main()
  {
     
    // Given array
    List<string> arr = new List<string>(new string[] { "c", "a", "b" });
 
    // Given X
    int X = 2;
 
    differentFlagPermutations(X, arr);
  }
}
 
// This code is contributed by divyesh072019


Javascript




<script>
 
    // Javascript program for the above approach
     
    // Function to generate permutations of
    // at most X elements from array arr[]
    function differentFlagPermutations(X, arr)
    {
      let ml = [];
      ml = arr;
      for(let i = 0; i < ml.length; i++)
      {
        document.write(ml[i] + " ");
      }
 
      let count = ml.length;
 
      // Traverse all possible lengths
      for(let z = 0; z < X - 1; z++)
      {
 
        // Stores all combinations
        // of length z
        let tmp = [];
 
        // Traverse the array
        for(let i = 0; i < arr.length; i++)
        {
          for(let k = 0; k < ml.length; k++)
          {
            if (arr[i] != ml[k])
            {
 
              // Generate all
              // combinations of length z
              tmp.push(ml[k] + arr[i]);
              count += 1;
            }
          }
        }   
 
        // Print all combinations of length z
        for(let i = 0; i < tmp.length; i++)
        {
          document.write(tmp[i] + " ");
        }
 
        // Replace all combinations of length z - 1
        // with all combinations of length z
        ml = tmp;
      }
    }
     
    // Given array
    let arr = [ "c", "a", "b" ];
  
    // Given X
    let X = 2;
  
    differentFlagPermutations(X, arr);
 
</script>


Output: 

c a b ac bc ca ba cb ab

 

Time Complexity: O(X*N2)
Auxiliary Space: O(N2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments