Saturday, January 4, 2025
Google search engine
HomeData Modelling & AIGenerate a unique Array of length N with sum of all subarrays...

Generate a unique Array of length N with sum of all subarrays divisible by N

Given an integer N, the task is to make an array of unique elements of length N such that all subarrays sum modulo N equals to zero.
 

Examples: 

Input: N = 6 
Output: 6 12 18 24 30 36 
Explanation: 
Since all elements are a multiple of 6. Hence all subarrays add up to a sum divisible by 6.
Input: N = 4 
Output: 4 8 12 16 
 

 

Approach: 
We can observe that for all subarrays to be divisible by N, the elements of the array need to be a multiple of N.
Illustration: 

For N = 4, if we consider the array elements to {4, 8, 12, 16}, All possible subarrays are: 
{4}, {8}, {12}, {16}, {4, 8}, {8, 12}, {12, 16}, {4, 8, 12}, {8, 12, 16}, {4, 8, 12, 16} 
Hence, all subarrays have a sum divisible by N. 
 

Hence, to solve the problem, we just need to print {N, 2*N, 3*N, ….., N*N} to get the desired array. 
Below is the implementation of the above approach:
 

C++




// C++ implementation of the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the required
// array
void makeArray(int a[], int n)
{
    // Print the array
    for (int i = 1; i <= n; i++)
        cout << i * n << " ";
}
 
// Driver Program
int main()
{
    int N = 6;
    int arr[N];
    makeArray(arr, N);
}


Java




// Java program for the above approach
class GFG{
 
// Function to print the required
// array
static void makeArray(int a[], int n)
{
     
    // Print the array
    for(int i = 1; i <= n; i++)
       System.out.print(i * n + " ");
}
 
// Driver code
public static void main(String[] args)
{
    int N = 6;
    int arr[] = new int[N];
     
    makeArray(arr, N);
}
}
 
// This code is contributed by Pratima Pandey


Python3




# Python3 implementation of the
# above approach
 
# Function to print the
# required array
def makeArray(n):
     
    # Print Array
    for i in range(n):
        print((i + 1) * n, end =" ")
 
 
# Driver code
n = 6;
makeArray(n);


C#




// C# program for the above approach
using System;
class GFG{
 
// Function to print the required
// array
static void makeArray(int []a, int n)
{
     
    // Print the array
    for(int i = 1; i <= n; i++)
    Console.Write(i * n + " ");
}
 
// Driver code
public static void Main()
{
    int N = 6;
    int []arr = new int[N];
     
    makeArray(arr, N);
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
    // javascript program for the above approach
   
// Function to print the required
// array
 
function makeArray(n)
{
       
    // Print the array
    for(var i = 1; i <= n; i++)
    document.write(i * n + " ");
}
   
// Driver code
  
    var N = 6;
       
    makeArray(N);
 
   
 
</script>


Output: 

6 12 18 24 30 36

 

Time Complexity: O(N) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments