Given an integer N, the task is to generate a matrix of dimensions N x N using positive integers from the range [1, N] such that the sum of the secondary diagonal is a perfect square.
Examples:
Input: N = 3
Output:
1 2 3
2 3 1
3 2 1
Explanation:
The sum of secondary diagonal = 3 + 3 + 3 = 9(= 32).Input: N = 7
Output:
1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
4 5 6 7 1 2 3
5 6 7 1 2 3 4
6 7 1 2 3 4 5
7 1 2 3 4 5 6
Explanation:
The sum of secondary diagonal = 7 + 7 + 7 + 7 + 7 + 7 + 7 = 49(= 72).
Approach: Since the generated matrix needs to be of dimensions N x N, therefore, to make the sum of elements in the secondary diagonal a perfect square, the idea is to assign N at each index of the secondary diagonal. Therefore, the sum of all N elements in this diagonal is N2, which is a perfect square. Follow the steps below to solve the problem:
- Initialize a matrix mat[][] of dimension N x N.
- Initialize the first row of the matrix as {1 2 3 … N}.
- Now for the remaining rows of the matrix, fill each row by circular left shift of the arrangement of the previous row of the matrix by 1.
- Print the matrix after completing the above steps.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; Â
// Function to print the matrix whose sum // of element in secondary diagonal is a // perfect square void diagonalSumPerfectSquare( int arr[], int N) {          // Iterate for next N - 1 rows     for ( int i = 0; i < N; i++)     {                  // Print the current row after         // the left shift         for ( int j = 0; j < N; j++)         {             cout << (arr[(j + i) % 7]) << " " ;         }         cout << endl;     } } Â
// Driver Code int main() { Â Â Â Â Â Â Â Â Â // Given N Â Â Â Â int N = 7; Â
    int arr[N]; Â
    // Fill the array with elements     // ranging from 1 to N     for ( int i = 0; i < N; i++)     {         arr[i] = i + 1;     } Â
    // Function Call     diagonalSumPerfectSquare(arr, N); } Â
// This code is contributed by gauravrajput1 |
Java
// Java program for the above approach class GFG { Â
    // Function to print the matrix whose sum     // of element in secondary diagonal is a     // perfect square     static void diagonalSumPerfectSquare( int [] arr,                                          int N)     { Â
        // Iterate for next N - 1 rows         for ( int i = 0 ; i < N; i++)         { Â
            // Print the current row after             // the left shift             for ( int j = 0 ; j < N; j++)             {                 System.out.print(arr[(j + i) % 7 ] + " " );             }             System.out.println();         }     } Â
    // Driver Code     public static void main(String[] srgs)     { Â
        // Given N         int N = 7 ; Â
        int [] arr = new int [N]; Â
        // Fill the array with elements         // ranging from 1 to N         for ( int i = 0 ; i < N; i++)         {             arr[i] = i + 1 ;         } Â
        // Function Call         diagonalSumPerfectSquare(arr, N);     } } Â
// This code is contributed by Amit Katiyar |
Python3
# Python3 program for the above approach Â
# Function to print the matrix whose sum # of element in secondary diagonal is a # perfect square def diagonalSumPerfectSquare(arr, N):        # Print the current row     print ( * arr, sep = " " )          # Iterate for next N - 1 rows     for i in range (N - 1 ):                 # Perform left shift by 1         arr = arr[i::] + arr[:i:]                  # Print the current row after         # the left shift         print ( * arr, sep = " " ) Â
# Driver Code Â
# Given N N = 7 Â
arr = [] Â
# Fill the array with elements # ranging from 1 to N for i in range ( 1 , N + 1 ): Â Â Â Â arr.append(i) Â
# Function Call diagonalSumPerfectSquare(arr, N) |
C#
// C# program for the // above approach using System; class GFG { Â
    // Function to print the matrix whose sum     // of element in secondary diagonal is a     // perfect square     static void diagonalSumPerfectSquare( int [] arr,                                          int N)     {         // Iterate for next N - 1 rows         for ( int i = 0; i < N; i++)         {             // Print the current row after             // the left shift             for ( int j = 0; j < N; j++)             {                 Console.Write(arr[(j + i) % 7] + " " );             }             Console.WriteLine();         }     } Â
    // Driver Code     public static void Main(String[] srgs)     {         // Given N         int N = 7; Â
        int [] arr = new int [N]; Â
        // Fill the array with elements         // ranging from 1 to N         for ( int i = 0; i < N; i++) {             arr[i] = i + 1;         } Â
        // Function Call         diagonalSumPerfectSquare(arr, N);     } } Â
// This code is contributed by 29AjayKumar |
Javascript
<script> Â
// Javascript program to implement // the above approach       // Function to print the matrix whose sum     // of element in secondary diagonal is a     // perfect square     function diagonalSumPerfectSquare( arr,N)     {           // Iterate for next N - 1 rows         for (let i = 0; i < N; i++)         {               // Print the current row after             // the left shift             for (let j = 0; j < N; j++)             {                 document.write(arr[(j + i) % 7] + " " );             }             document.write( "<br/>" );         }     } Â
Â
// Driver Code Â
        // Given N         let N = 7;           let arr = new Array(N).fill(0);           // Fill the array with elements         // ranging from 1 to N         for (let i = 0; i < N; i++)         {             arr[i] = i + 1;         }           // Function Call         diagonalSumPerfectSquare(arr, N);    // This code is contributed by avijitmondal1998. </script> |
1 2 3 4 5 6 7 2 3 4 5 6 7 1 3 4 5 6 7 1 2 4 5 6 7 1 2 3 5 6 7 1 2 3 4 6 7 1 2 3 4 5 7 1 2 3 4 5 6
Time Complexity: O(N2)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!