Friday, September 5, 2025
HomeData Modelling & AIGCD of factorials of two numbers

GCD of factorials of two numbers

Given two numbers m and n. Find the GCD of  their factorial.
Examples : 

Input : n = 3, m = 4
Output : 6
Explanation:
Factorial of n = 1 * 2 * 3 = 6
Factorial of m = 1 * 2 * 3 * 4 = 24
GCD(6, 24) = 6.

Input : n = 9, m = 5
Output : 20
Explanation:
Factorial of n = 1 * 2 * 3 *4 * 5 * 6 * 7 * 8 * 9 = 362880
Factorial of m = 1 * 2 * 3 * 4 * 5 = 120
GCD(362880, 120) = 120

 

A simple solution is to find factorials of both numbers. Then find GCD of the computed factorials.
An efficient solution is based on the fact that GCD of two factorials is equal to smaller factorial (note that factorials have all terms common).
Below is the implementation of above approach. 
 

C++




// CPP program to find GCD of factorial of two
// numbers.
#include <bits/stdc++.h>
using namespace std;
 
int factorial(int x)
{
    if (x <= 1)
        return 1;
    int res = 2;
    for (int i = 3; i <= x; i++)
        res = res * i;
    return res;
}
 
int gcdOfFactorial(int m, int n)
{
    return factorial(min(m, n));
}
 
int main()
{
    int m = 5, n = 9;
    cout << gcdOfFactorial(m, n);
    return 0;
}


Java




// Java program to find GCD of factorial
// of two numbers.
public class FactorialGCD{
     
static int factorial(int x)
{
    if (x <= 1)
        return 1;
    int res = 2;
    for (int i = 3; i <= x; i++)
        res = res * i;
    return res;
}
 
static int gcdOfFactorial(int m, int n)
{
    int min = m < n ? m : n;
    return factorial(min);
}
 
    /* Driver program to test above functions */
    public static void main (String[] args)
    {
        int m = 5, n = 9;
         
        System.out.println(gcdOfFactorial(m, n));
    }
}
 
// This code is contributed by Prerna Saini


Python




# Python code to find GCD of factorials of
# two numbers.
import math
 
def gcdOfFactorial(m, n) :
    return math.factorial(min(m, n))
 
# Driver code
m = 5
n = 9
print(gcdOfFactorial(m, n))


C#




// C# program to find GCD of factorial
// of two numbers.
using System;
 
public class GFG{
      
    static int factorial(int x)
    {
        if (x <= 1)
            return 1;
             
        int res = 2;
         
        for (int i = 3; i <= x; i++)
            res = res * i;
             
        return res;
    }
      
    static int gcdOfFactorial(int m, int n)
    {
        int min = m < n ? m : n;
        return factorial(min);
    }
  
    /* Driver program to test above functions */
    public static void Main()
    {
         
        int m = 5, n = 9;
          
        Console.WriteLine(gcdOfFactorial(m, n));
    }
}
  
// This code is contributed by Anant Agarwal.


PHP




<?php
// PHP program to find GCD
// of factorial of two numbers.
 
function factorial($x)
{
    if ($x <= 1)
        return 1;
    $res = 2;
    for ($i = 3; $i <= $x; $i++)
        $res = $res * $i;
    return $res;
}
 
function gcdOfFactorial($m, $n)
{
    return factorial(min($m, $n));
}
 
// Driver Code
$m = 5; $n = 9;
echo gcdOfFactorial($m, $n);
 
// This code is contributed by ajit
?>


Javascript




<script>
 
// JavaScript program to find GCD of factorial
// of two numbers.
 
    function factorial(x) {
        if (x <= 1)
            return 1;
        var res = 2;
        for (i = 3; i <= x; i++)
            res = res * i;
        return res;
    }
 
    function gcdOfFactorial(m , n) {
        var min = m < n ? m : n;
        return factorial(min);
    }
 
    /* Driver program to test above functions */
     
        var m = 5, n = 9;
 
        document.write(gcdOfFactorial(m, n));
 
// This code is contributed by aashish1995
 
</script>


Output

120

Time complexity: O(min(m,n))
Auxiliary space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32269 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6638 POSTS0 COMMENTS
Nicole Veronica
11802 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11866 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7027 POSTS0 COMMENTS
Thapelo Manthata
6704 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS