Saturday, December 28, 2024
Google search engine
HomeLanguagesFull outer join in PySpark dataframe

Full outer join in PySpark dataframe

In this article, we are going to see how to perform Full Outer Join in PySpark DataFrames in Python.

Create the first dataframe:

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data = [["1", "sravan", "company 1"],
        ["2", "ojaswi", "company 1"],
        ["3", "rohith", "company 2"],
        ["4", "sridevi", "company 1"],
        ["5", "bobby", "company 1"]]
  
# specify column names
columns = ['ID', 'NAME', 'Company']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
dataframe.show()


Output:

Create second Dataframe:

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data1 = [["1", "45000", "IT"], 
         ["2", "145000", "Manager"], 
         ["6", "45000", "HR"],
         ["5", "34000", "Sales"]]
  
# specify column names
columns = ['ID', 'salary', 'department']
  
# creating a dataframe from the lists of data
dataframe1 = spark.createDataFrame(data1, columns)
  
dataframe1.show()


Output:

Method 1: Using full keyword

This is used to join the two PySpark dataframes with all rows and columns using full keyword

Syntax: dataframe1.join(dataframe2,dataframe1.column_name ==  dataframe2.column_name,”full”).show()

where

  • dataframe1 is the first PySpark dataframe
  • dataframe2 is the second PySpark dataframe
  • column_name is the column with respect to dataframe

Example: Python program to join two dataframes based on the ID column.

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data = [["1", "sravan", "company 1"],
        ["2", "ojaswi", "company 1"],
        ["3", "rohith", "company 2"],
        ["4", "sridevi", "company 1"], 
        ["5", "bobby", "company 1"]]
  
# specify column names
columns = ['ID', 'NAME', 'Company']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
# list  of employee data
data1 = [["1", "45000", "IT"], 
         ["2", "145000", "Manager"],
         ["6", "45000", "HR"],
         ["5", "34000", "Sales"]]
  
# specify column names
columns = ['ID', 'salary', 'department']
  
# creating a dataframe from the lists of data
dataframe1 = spark.createDataFrame(data1, columns)
  
  
# join two dataframes based on
# ID column using full keyword
dataframe.join(dataframe1,
               dataframe.ID == dataframe1.ID
               "full").show()


Output:

Method 2: Using fullouter keyword

This is used to join the two PySpark dataframes with all rows and columns using fullouter keyword

Syntax: dataframe1.join(dataframe2,dataframe1.column_name ==  dataframe2.column_name,”fullouter”).show()

where

  • dataframe1 is the first PySpark dataframe
  • dataframe2 is the second PySpark dataframe
  • column_name is the column with respect to dataframe

Example: Python program to join two dataframes based on the ID column.

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data = [["1", "sravan", "company 1"],
        ["2", "ojaswi", "company 1"], 
        ["3", "rohith", "company 2"],
        ["4", "sridevi", "company 1"],
        ["5", "bobby", "company 1"]]
  
# specify column names
columns = ['ID', 'NAME', 'Company']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
# list  of employee data
data1 = [["1", "45000", "IT"], 
         ["2", "145000", "Manager"],
         ["6", "45000", "HR"],
         ["5", "34000", "Sales"]]
  
# specify column names
columns = ['ID', 'salary', 'department']
  
# creating a dataframe from the lists of data
dataframe1 = spark.createDataFrame(data1, columns)
  
  
# join two dataframes based on ID
# column using full outer keyword
dataframe.join(dataframe1,
               dataframe.ID == dataframe1.ID
               "fullouter").show()


Output:

Method 3: Using outer keyword

This is used to join the two PySpark dataframes with all rows and columns using the outer keyword.

Syntax: dataframe1.join(dataframe2,dataframe1.column_name ==  dataframe2.column_name,”outer”).show()

where,

  • dataframe1 is the first PySpark dataframe
  • dataframe2 is the second PySpark dataframe
  • column_name is the column with respect to dataframe

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data = [["1", "sravan", "company 1"],
        ["2", "ojaswi", "company 1"],
        ["3", "rohith", "company 2"],
        ["4", "sridevi", "company 1"], 
        ["5", "bobby", "company 1"]]
  
# specify column names
columns = ['ID', 'NAME', 'Company']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
# list  of employee data
data1 = [["1", "45000", "IT"],
         ["2", "145000", "Manager"],
         ["6", "45000", "HR"],
         ["5", "34000", "Sales"]]
  
# specify column names
columns = ['ID', 'salary', 'department']
  
# creating a dataframe from the lists of data
dataframe1 = spark.createDataFrame(data1, columns)
  
  
# join two dataframes based on
# ID column using outer keyword
dataframe.join(dataframe1,
               dataframe.ID == dataframe1.ID
               "outer").show()


Output:

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments