Thursday, January 9, 2025
Google search engine

Frugal Number

A frugal number is a number whose number of digits is strictly greater than the number of digits in its prime factorization (including exponents). If the exponent is 1 for a certain prime, involved in the prime factorization, then that exponent does not contribute to the number of digits in the prime factorization.
Some examples of frugal numbers are:
 

1) 125 = 5^3    , here the number of digits in the number is three (1, 2 and 5) which is strictly greater than the number of digits in its prime factorization which is two (5 and 3). 
2) 512 = 2^9    , here the number of digits in the number is three (5, 1 and 2) which is strictly greater than the number of digits in its prime factorization which is two (2 and 9).
3) 1029 = 3 × 7^3    , here the number of digits in the number is four (1, 0, 2 and 9) which is strictly greater than the number of digits its prime factorization which is three (3, 7 and 3).

The first few frugal numbers are : 125, 128, 243, 256, 343, 512, 625, 729, ….
It may be noted here that prime numbers are not frugal numbers, since the number of digits in the prime factorization of a prime number is equal to the number of digits in the prime number (since exponents of value 1 are not considered). 
Example 19 = 19^1    , but the 1 in the exponent does not contribute to the number of digits in the prime factorization of the number. Hence the number of digits in the number is two (1 and 9), which is equal to the number of digits in its prime factorization (1 and 9).
A program to find whether a number, ‘n’ is frugal or not involves simple steps. First, we find all prime numbers upto ‘n’ and then find the prime factorization of n. Finally, we check whether the number of digits in n, is greater than the number of digits in the prime factorization of n.
 

C++




// Program to check for Frugal number
#include <bits/stdc++.h>
using namespace std;
 
// Finding primes upto entered number
vector<long long int> primes(long long int n)
{
    bool prime[n + 1];
 
    // Finding primes by Sieve of Eratosthenes method
    memset(prime, true, sizeof(prime));
    for (int i = 2; i * i <= n; i++) {
 
        // If prime[i] is not changed, then it is prime
        if (prime[i] == true) {
 
            // Update all multiples of p
            for (int j = i * 2; j <= n; j += i)
                prime[j] = false;
        }
    }
 
    // Forming array of the prime numbers found
    vector<long long int> arr;   
    for (int i = 2; i < n; i++)
        if (prime[i])
            arr.push_back(i);   
 
    return arr;
}
 
// Returns number of digits in n
int countDigits(long long int n)
{
    long long int temp = n;
    int c = 0;
    while (temp != 0) {
        temp = temp / 10;
        c++;
    }
    return c;
}
 
// Checking whether a number is Frugal or not
bool frugal(long long int n)
{
    vector<long long int> r = primes(n);  
    long long int t = n;
    // Finding number of digits in prime 
    // factorization of the number
    long long int s = 0;
    for (int i = 0; i < r.size(); i++) {
        if (t % r[i] == 0) {
             
            // Exponent for current factor
            long long int k = 0; 
             
            // Counting number of times this prime
            // factor divides (Finding exponent)
            while (t % r[i] == 0) {
                t = t / r[i];
                k++;
            }
 
            // Finding number of digits in the exponent   
            // Avoiding exponents of value 1
            if (k == 1)
                s = s + countDigits(r[i]);
            else if (k != 1)
                s = s + countDigits(r[i]) + countDigits(k);           
        }
    }
 
    // Checking condition for frugal number
    return (countDigits(n) > s && s != 0);
}
 
// Driver Method to check for frugal number
int main()
{
    long long int n = 343;
    if (frugal(n))
        cout << "A Frugal number\n";
    else
        cout << "Not a frugal number\n";
    return 0;
}


Java




// Program to check
// for Frugal number
import java.io.*;
import java.util.*;
 
class GFG
{
    // Finding primes upto
    // entered number
    static ArrayList<Long>
           primes(long n)
    {
        boolean []prime =
                new boolean[(int)n + 1];
        for(int i = 0;
                i < n + 1; i++)
            prime[i] = true;
     
        // Finding primes by Sieve
        // of Eratosthenes method
        for (int i = 2;
                 i * i <= n; i++)
        {
     
            // If prime[i] is not
            // changed, then it
            // is prime
            if (prime[i] == true)
            {
                // Update all
                // multiples of p
                for (int j = i * 2;
                         j <= n; j += i)
                    prime[j] = false;
            }
        }
         
        // Forming array of the
        // prime numbers found
        ArrayList<Long> arr =
                 new ArrayList<Long>();
        for (int i = 2; i < n; i++)
            if (prime[i])
                arr.add((long)i);
 
        return arr;
    }
     
    // Returns number
    // of digits in n
    static int countDigits(long n)
    {
        long temp = n;
        int c = 0;
        while (temp != 0)
        {
            temp = temp / 10;
            c++;
        }
        return c;
    }
     
    // Checking whether a
    // number is Frugal or not
    static boolean frugal(long n)
    {
        ArrayList<Long> r = primes(n);
        long t = n;
         
        // Finding number of digits
        // in prime factorization
        // of the number
        long s = 0;
        for (int i = 0;
                 i < r.size(); i++)
        {
            if (t % r.get(i) == 0)
            {
                 
                // Exponent for
                // current factor
                long k = 0;
                 
                // Counting number of times
                // this prime factor divides
                // (Finding exponent)
                while (t % r.get(i) == 0)
                {
                    t = t / r.get(i);
                    k++;
                }
     
                // Finding number of digits
                // in the exponent Avoiding
                // exponents of value 1
                if (k == 1)
                    s = s + countDigits(r.get(i));
                else if (k != 1)
                    s = s + countDigits(r.get(i)) +
                            countDigits(k);        
            }
        }
         
        // Checking condition
        // for frugal number
        return (countDigits(n) > s && s != 0);
    }
     
    // Driver Code
    public static void main(String[] args)
    {
        long n = 343;
        if (frugal(n))
            System.out.print("A Frugal number\n");
        else
            System.out.print("Not a frugal number\n");
    }
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)


Python3




# Program to check for Frugal number
 
# Finding primes upto entered number
def primes(n):
 
    # Finding primes by Sieve
    # of Eratosthenes method
    prime = [True] * (n + 1);
     
    i = 2;
    while (i * i <= n):
         
        # If prime[i] is not changed,
        # then it is prime
        if (prime[i] == True):
             
            # Update all multiples of p
            j = i * 2;
            while (j <= n):
                prime[j] = False;
                j += i;
        i += 1;
     
    # Forming array of the prime
    # numbers found
    arr = [];
    for i in range(2, n):
        if (prime[i]):
            arr.append(i);
 
    return arr;
 
# Returns number of digits in n
def countDigits(n):
 
    temp = n;
    c = 0;
    while (temp != 0):
        temp = int(temp / 10);
        c += 1;
    return c;
 
# Checking whether a number is
# Frugal or not
def frugal(n):
 
    r = primes(n);
    t = n;
     
    # Finding number of digits
    # in prime factorization
    # of the number
    s = 0;
    for i in range(len(r)):
        if (t % r[i] == 0):
             
            # Exponent for current factor
            k = 0;
             
            # Counting number of times
            # this prime factor divides
            # (Finding exponent)
            while (t % r[i] == 0):
                t = int(t / r[i]);
                k += 1;
             
            # Finding number of digits
            # in the exponent Avoiding
            # exponents of value 1
            if (k == 1):
                s = s + countDigits(r[i]);
            elif (k != 1):
                s = (s + countDigits(r[i]) +
                         countDigits(k));    
     
    # Checking condition
    # for frugal number
    return (countDigits(n) > s and s != 0);
 
# Driver Code
n = 343;
if (frugal(n)):
    print("A Frugal number");
else:
    print("Not a frugal number");
     
# This code is contributed by
# mits


C#




// Program to check for Frugal number
using System;
using System.Collections.Generic;
 
class GFG
{
    // Finding primes upto
    // entered number
    static List<long> primes(long n)
    {
        bool []prime = new bool[n + 1];
        for(int i = 0; i < n + 1; i++)
            prime[i] = true;
     
        // Finding primes by Sieve
        // of Eratosthenes method
        for (int i = 2; i * i <= n; i++)
        {
     
            // If prime[i] is not
            // changed, then it is prime
            if (prime[i] == true)
            {
     
                // Update all multiples of p
                for (int j = i * 2;
                         j <= n; j += i)
                    prime[j] = false;
            }
        }
         
        // Forming array of the
        // prime numbers found
        List<long> arr = new List<long>();
        for (int i = 2; i < n; i++)
            if (prime[i])
                arr.Add(i);
 
        return arr;
    }
     
    // Returns number of digits in n
    static int countDigits(long n)
    {
        long temp = n;
        int c = 0;
        while (temp != 0)
        {
            temp = temp / 10;
            c++;
        }
        return c;
    }
     
    // Checking whether a number
    // is Frugal or not
    static bool frugal(long n)
    {
        List<long> r = primes(n);
        long t = n;
         
        // Finding number of digits in prime
        // factorization of the number
        long s = 0;
        for (int i = 0; i < r.Count; i++)
        {
            if (t % r[i] == 0)
            {
                 
                // Exponent for current factor
                long k = 0;
                 
                // Counting number of times
                // this prime factor divides
                // (Finding exponent)
                while (t % r[i] == 0)
                {
                    t = t / r[i];
                    k++;
                }
     
                // Finding number of digits
                // in the exponent Avoiding
                // exponents of value 1
                if (k == 1)
                    s = s + countDigits(r[i]);
                else if (k != 1)
                    s = s + countDigits(r[i]) +
                            countDigits(k);        
            }
        }
         
        // Checking condition
        // for frugal number
        return (countDigits(n) > s && s != 0);
    }
     
    // Driver Code
    static void Main()
    {
        long n = 343;
        if (frugal(n))
            Console.Write("A Frugal number\n");
        else
            Console.Write("Not a frugal number\n");
    }
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)


PHP




<?php
// Program to check for Frugal number
 
// Finding primes upto
// entered number
function primes($n)
{
    $prime = array();
 
    // Finding primes by Sieve
    // of Eratosthenes method
    for($i = 0; $i < $n + 1; $i++)
        $prime[$i] = true;
 
    for ($i = 2; $i * $i <= $n; $i++)
    {
 
        // If prime[i] is not changed,
        // then it is prime
        if ($prime[$i] == true)
        {
 
            // Update all multiples of p
            for ($j = $i * 2;
                 $j <= $n; $j += $i)
                $prime[$j] = false;
        }
    }
     
    // Forming array of the
    // prime numbers found
    $arr = array();
    for ($i = 2; $i < $n; $i++)
        if ($prime[$i])
            array_push($arr, $i);
 
    return $arr;
}
 
// Returns number
// of digits in n
function countDigits($n)
{
    $temp = $n;
    $c = 0;
    while ($temp != 0)
    {
        $temp = intval($temp / 10);
        $c++;
    }
    return $c;
}
 
// Checking whether a
// number is Frugal or not
function frugal($n)
{
    $r = primes($n);
    $t = $n;
     
    // Finding number of digits
    // in prime factorization
    // of the number
    $s = 0;
    for ($i = 0; $i < count($r); $i++)
    {
        if ($t % $r[$i] == 0)
        {
             
            // Exponent for
            // current factor
            $k = 0;
             
            // Counting number of times
            // this prime factor divides
            // (Finding exponent)
            while ($t % $r[$i] == 0)
            {
                $t = intval($t / $r[$i]);
                $k++;
            }
             
            // Finding number of digits
            // in the exponent Avoiding
            // exponents of value 1
            if ($k == 1)
                $s = $s + countDigits($r[$i]);
            else if ($k != 1)
                $s = $s + countDigits($r[$i]) +
                          countDigits($k);        
        }
    }
     
    // Checking condition
    // for frugal number
    return (countDigits($n) > $s &&
                        $s != 0);
}
 
// Driver Code
$n = 343;
if (frugal($n))
    echo ("A Frugal number\n");
else
    echo ("Not a frugal number\n");
     
// This code is contributed by
// Manish Shaw(manishshaw1)
?>


Javascript




<script>
 
// Program to check for Frugal number
 
// Finding primes upto entered number
function primes(n)
{
    var prime = Array(n+1).fill(true);
 
    // Finding primes by Sieve of Eratosthenes method
    for (var i = 2; i * i <= n; i++) {
 
        // If prime[i] is not changed, then it is prime
        if (prime[i] == true) {
 
            // Update all multiples of p
            for (var j = i * 2; j <= n; j += i)
                prime[j] = false;
        }
    }
 
    // Forming array of the prime numbers found
    var arr = [];   
    for (var i = 2; i < n; i++)
        if (prime[i])
            arr.push(i);   
 
    return arr;
}
 
// Returns number of digits in n
function countDigits(n)
{
    var temp = n;
    var c = 0;
    while (temp != 0) {
        temp = parseInt(temp / 10);
        c++;
    }
    return c;
}
 
// Checking whether a number is Frugal or not
function frugal(n)
{
    var r = primes(n);  
    var t = n;
    // Finding number of digits in prime 
    // factorization of the number
    var s = 0;
    for (var i = 0; i < r.length; i++) {
        if (t % r[i] == 0) {
             
            // Exponent for current factor
            var k = 0; 
             
            // Counting number of times this prime
            // factor divides (Finding exponent)
            while (t % r[i] == 0) {
                t = parseInt(t / r[i]);
                k++;
            }
 
            // Finding number of digits in the exponent   
            // Avoiding exponents of value 1
            if (k == 1)
                s = s + countDigits(r[i]);
            else if (k != 1)
                s = s + countDigits(r[i]) + countDigits(k);           
        }
    }
 
    // Checking condition for frugal number
    return (countDigits(n) > s && s != 0);
}
 
// Driver Method to check for frugal number
var n = 343;
if (frugal(n))
    document.write( "A Frugal number");
else
    document.write( "Not a frugal number");
 
// This code is contributed by rrrtnx.
</script>


Output: 

A Frugal number

 

Time Complexity: O(nlog(logn)) 
Auxiliary Space: O(n)

Please suggest if someone has a better solution which is more efficient in terms of space and time.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

Optimization : 
The above code can be optimized using the approach discussed in Print all prime factors and their powers
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments