Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFor each A find smallest subset with all elements less than A...

For each A[i] find smallest subset with all elements less than A[i] sum more than B[i]

Given two arrays A[] and B[] of N integers, the task is to find for each element A[i], the size of the smallest subset S of indices, such that  : 

  • Each value corresponding to the indices in subset S is strictly less than A[i].
  • Sum of elements corresponding to the indices in B is strictly greater than B[i].

Examples:

Input: N = 5, A = {3, 2, 100, 4, 5}, B = {1, 2, 3, 4, 5}
Output: {1, -1, 1, -1, 3}
Explanation:  Subsets for each element of A are :  
A[0] : {1}, (A[1] < A[0] and B[1] > B[0])
A[1] : {}, (no such subset exist )
A[2] : {4},  (A[4] < A[2] and B[4] > B[2])
A[3] : {}, (no such subset exist )
A[4] : {0, 1, 3}, (A[0] < A[4], A[1] < A[4], A[3] < A[4] and (B[0]+B[1]+B[3] > B[4]) )

Input : N = 4, A = {1, 1, 1, 1}, B = {2, 4, 5, 9}
Output : {-1, -1, -1, -1}

 

Approach: The problem can be solved by a greedy approach using a multiset as per the following idea:

Sort the array A[] along with their indices and for each element in sorted array find the smallest subset having elements of B with sum greater than current element of B.
Use multiset in decreasing order to store elements of B.

Follow the below steps to solve this problem: 

  • Declare a vector v of pairs, that stores the elements of array A along with their indices.
  • Sort the vector v. After sorting, the 1st condition is fulfilled for each element. 
  • Declare a multiset s so that elements in multiset are in decreasing order.
  • Iterate through the vector v and at each ith iteration:
    • Store the element in array B corresponding to the index in ith element of vector (i.e. 2nd element of pair) in a variable say curr_B.
    • Iterate through the set, simultaneously keeping the count and sum of elements of the set, until the sum becomes just greater than curr_B.
    • Insert curr_B into the set and count ( of the required set ) found for ith element into array storing answer (ans).
  • Return the ans vector after the completion of all iteration.

Below is the implementation of the above approach :

C++




// C++ program for Find minimum size of subset
// for each index of the array satisfying the
// given condition
#include <bits/stdc++.h>
using namespace std;
 
// Functions to print minimum size of subset
// for each element satisfying the given conditions
void printSubsets(int N, int A[], int B[])
{
    // storing the elements of A along with
    // their indices in a vector of pairs v
    vector<pair<int, int> > v(N);
    for (int i = 0; i < N; i++) {
        v[i] = { A[i], i };
    }
 
    // sorting the vector v
    sort(v.begin(), v.end());
 
    // declaring a vector of size N to
    // store the answer
    vector<int> ans(N);
 
    // declaring a multiset to store the
    // corresponding values of B
    multiset<int, greater<int> > s;
 
    // iterating through the sorted vector v.
    // Since the vector is  sorted, so the 1st
    // condition is already fulfilled, i.e.
    // all the elements of A at indices of resultant
    // set would be less than current A[i]
    for (int i = 0; i < N; i++) {
        int curr_B = B[v[i].second];
 
        int size = 0;
        int sum = 0;
        // iterating through the set to find
        // the minimum set whose sum>B[i]
        //(or curr_B)
        for (auto x : s) {
            sum += x;
            size += 1;
            if (sum > curr_B)
                break;
        }
 
        // inserting the current element of B
        // into the set
        s.insert(curr_B);
 
        // if sum>B[i] condition is fulfilled,
        // we assign size of resultant subset to
        // the answer at the index
        if (sum > curr_B) {
            ans[v[i].second] = size;
        }
 
        // else we assign -1
        else {
            ans[v[i].second] = -1;
        }
    }
 
    // printing the answer
    for (int i = 0; i < N; i++) {
        cout << ans[i] << " ";
    }
}
 
// Driver Code
int main()
{
    int N = 5;
    int A[] = { 3, 2, 100, 4, 5 };
    int B[] = { 1, 2, 4, 3, 5 };
    printSubsets(N, A, B);
}


Java




import java.util.*;
import java.io.*;
 
// Java program for Find minimum size of subset
// for each index of the array satisfying the
// given condition
public class GFG{
 
    // Functions to print minimum size of subset
    // for each element satisfying the given conditions
    public static void printSubsets(int N, int A[], int B[]){
 
        // Storing the elements of A along with
        // their indices in a arrayList of pairs v
        Pair v[] = new Pair[N];
        for(int i = 0 ; i < N ; i++){
            v[i] = new Pair(A[i], i);
        }
 
        // Sorting the array v
        Arrays.sort(v, new comp());
 
        // Declaring a array of size N to
        // store the answer
        int ans[] = new int[N];
 
        // Declaring a map to store the corresponding
        // values of B
        TreeMap<Integer, Integer> s = new TreeMap<Integer,Integer>();
 
        // iterating through the sorted arraylist v.
        // Since the arraylist is sorted, so the 1st
        // condition is already fulfilled, i.e.
        // all the elements of A at indices of resultant
        // set would be less than current A[i]
        for (int i = 0 ; i < N ; i++) {
            int curr_B = B[v[i].second];
 
            int size = 0;
            int sum = 0;
            // iterating through the set to find
            // the minimum set whose sum>B[i]
            //(or curr_B)
            for (Map.Entry<Integer, Integer> x : s.entrySet()) {
                for(int j=1 ; j<=x.getValue() ; j++){
                    sum += (-x.getKey());
                    size += 1;
                    if (sum > curr_B)
                        break;
                }
                if (sum > curr_B)
                    break;
            }
 
            // inserting the current element of B
            // into the TreeMap
            if(s.containsKey(-curr_B)){
                s.put(-curr_B, s.get(-curr_B)+1);
            }else{
                s.put(-curr_B, 1);
            }
     
            // if sum>B[i] condition is fulfilled,
            // we assign size of resultant subset to
            // the answer at the index
            if (sum > curr_B) {
                ans[v[i].second] = size;
            }
     
            // else we assign -1
            else {
                ans[v[i].second] = -1;
            }
        }
     
        // printing the answer
        for (int i = 0; i < N; i++) {
            System.out.print(ans[i] + " ");
        }
    }
 
    // Driver code
    public static void main(String args[])
    {
        int N = 5;
        int A[] = {3, 2, 100, 4, 5};
        int B[] = {1, 2, 4, 3, 5};
 
        printSubsets(N, A, B);
    }
}
 
class Pair{
    Integer first;
    Integer second;
 
    Pair(int x, int y){
        this.first = x;
        this.second = y;
    }
}
 
class comp implements Comparator<Pair>{
    public int compare(Pair x, Pair y){
        if(x.first.equals(y.first)){
            return x.second.compareTo(y.second);
        }
        return x.first.compareTo(y.first);
    }
}
 
// This code is contributed by subhamgoyal2014.


Python3




# Python program to find the minimum size of the subset
# for each index of the array satisfying the given condition
import bisect
 
#Functions to print minimum size of subset
#for each element satisfying the given conditions
def printSubsets(N, A, B):
    #storing the elements of A along with
    #their indices in a vector of pairs v
    v = [[A[i], i] for i in range(N)]
     
    v.sort() #sorting v
     
    #initializing ans, s
    ans = [0] * N
    s = list()
 
     
    for i in range(N):
        curr_B = B[v[i][1]]
        size = 0
        sums = 0
 
        for ele in s:
            sums += ele
            size += 1
            if sums > curr_B:
                break
        #to ensure that sorted status of s is maintained
        bisect.insort(s, curr_B)
        if (sums > curr_B):
            ans[v[i][1]] = size
        else:
            ans[v[i][1]] = -1
 
    print(" ".join(list(map(str, ans))))
 
# Driver Code
N = 5
A = [3, 2, 100, 4, 5]
B = [1, 2, 4, 3, 5]
printSubsets(N, A, B)
 
# This code is contributed by phalasi.


Javascript




<script>
// JS  program for Find minimum size of subset
// for each index of the array satisfying the
// given condition
 
// Functions to print minimum size of subset
// for each element satisfying the given conditions
function printSubsets(N, A, B)
{
    // storing the elements of A along with
    // their indices in a vector of pairs v
    var v = [];
    for (var i = 0; i < N; i++) {
        v.push([ A[i], i ]);
    }
 
    // sorting the vector v
    v.sort();
 
    // declaring a vector of size N to
    // store the answer
    var ans = new Array(N).fill(0);
 
    // declaring a multiset to store the
    // corresponding values of B
    var s = [];
 
    // iterating through the sorted vector v.
    // Since the vector is  sorted, so the 1st
    // condition is already fulfilled, i.e.
    // all the elements of A at indices of resultant
    // set would be less than current A[i]
    for (var i = 0; i < N; i++) {
        var curr_B = B[v[i][1]];
 
        var size = 0;
        var sum = 0;
        // iterating through the set to find
        // the minimum set whose sum>B[i]
        //(or curr_B)
        for (var j = 0; j < s.length; j++) {
            sum += s[j];
            size += 1;
            if (sum > curr_B)
                break;
        }
 
        // inserting the current element of B
        // into the sorted list s
        // this implementation mimics
        // C++ multiset or Python insort.
        var ind = 0;
        for (var j = 0; j < s.length; j++) {
            if (s[j] > curr_B)
                break;
            ind++;
        }
        s.splice(ind, 0, curr_B);
 
        // if sum>B[i] condition is fulfilled,
        // we assign size of resultant subset to
        // the answer at the index
 
        if (sum > curr_B) {
 
            ans[v[i][1]] = size;
        }
 
        // else we assign -1
        else {
            ans[v[i][1]] = -1;
        }
    }
 
    // printing the answer
    for (var i = 0; i < N; i++) {
        document.write(ans[i] + " ");
    }
}
 
// Driver Code
var N = 5;
var A = [ 3, 2, 100, 4, 5 ];
var B = [ 1, 2, 4, 3, 5 ];
printSubsets(N, A, B);
 
// This code is contributed by phasing17.
</script>


C#




using System;
using System.Linq;
using System.Collections.Generic;
 
// C# program for Find minimum size of subset
// for each index of the array satisfying the
// given condition
class GFG {
    static void PrintSubsets(int N, int[] A, int[] B)
    {
        List<(int, int)> v = new List<(int, int)>();
        for (int i = 0; i < N; i++) {
            v.Add((A[i], i));
        }
 
        v.Sort();
 
        int[] ans = new int[N];
 
        SortedSet<int> s = new SortedSet<int>();
 
        for (int i = 0; i < N; i++) {
            int curr_B = B[v[i].Item2];
 
            int size = 0;
            int sum = 0;
 
            foreach(var x in s)
            {
                sum += x;
                size += 1;
                if (sum > curr_B)
                    break;
            }
 
            s.Add(curr_B);
 
            if (sum > curr_B) {
                ans[v[i].Item2] = size;
            }
 
            else {
                ans[v[i].Item2] = -1;
            }
        }
 
        for (int i = 0; i < N; i++) {
            Console.Write(ans[i] + " ");
        }
    }
 
    static void Main()
    {
        int N = 5;
        int[] A = { 3, 2, 100, 4, 5 };
        int[] B = { 1, 2, 4, 3, 5 };
        PrintSubsets(N, A, B);
    }
}


Output

1 -1 1 -1 3 

Time Complexity : O(N^2)
Auxiliary Space : O(N)

Last Updated :
16 Jan, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments