Prerequisite Differences between Flatten() and Ravel() Numpy Functions, numpy.ravel() in Python,
In this article, we will see how we can flatten a list of numpy arrays. NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays.
Flatten a list of NumPy array means to combine the multiple dimensional NumPy arrays into a single array or list, below is the example
List of numpy array :
[array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]])]Flatten numpy array :
array([ 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654,
0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654,
0.00353654, 0.00353654, 0.00353654])
Method 1
Using numpy’s concatenate method
Python3
# importing numpy as np import numpy as np # list of numpy array list_array = [np.array([[ 1 ]]), np.array([[ 2 ]]), np.array([[ 3 ]]), np.array([[ 4 ]]), np.array([[ 5 ]]), np.array([[ 6 ]]), np.array([[ 7 ]]), np.array([[ 8 ]]), np.array([[ 9 ]]), np.array([[ 10 ]]), np.array([[ 11 ]]), np.array([[ 12 ]]), np.array([[ 13 ]]), np.array([[ 14 ]]), np.array([[ 15 ]]), np.array([[ 16 ]])] # concatenating all the numpy array flatten = np.concatenate(list_array) # printing the ravel flatten array print (flatten.ravel()) |
Output :
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
Method 2
Using numpy’s flatten method
Python3
# importing numpy as np import numpy as np # list of numpy array list_array = [np.array([[ 1 ]]), np.array([[ 2 ]]), np.array([[ 3 ]]), np.array([[ 4 ]]), np.array([[ 5 ]]), np.array([[ 6 ]]), np.array([[ 7 ]]), np.array([[ 8 ]]), np.array([[ 9 ]]), np.array([[ 10 ]]), np.array([[ 11 ]]), np.array([[ 12 ]]), np.array([[ 13 ]]), np.array([[ 14 ]]), np.array([[ 15 ]]), np.array([[ 16 ]])] # flatten the numpy array flatten = np.array(list_array).flatten() # printing the flatten array print (flatten) |
Output :
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
Method 3
Using numpy’s ravel method
Python3
# importing numpy as np import numpy as np # list of numpy array list_array = [np.array([[ 1 ]]), np.array([[ 2 ]]), np.array([[ 3 ]]), np.array([[ 4 ]]), np.array([[ 5 ]]), np.array([[ 6 ]]), np.array([[ 7 ]]), np.array([[ 8 ]]), np.array([[ 9 ]]), np.array([[ 10 ]]), np.array([[ 11 ]]), np.array([[ 12 ]]), np.array([[ 13 ]]), np.array([[ 14 ]]), np.array([[ 15 ]]), np.array([[ 16 ]])] # flatten the numpy array using ravel method flatten = np.array(list_array).ravel() # printing the flatten array print (flatten) |
Output :
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
Method 4
Using numpy’s reshape method
Python3
# importing numpy as np import numpy as np # list of numpy array list_array = [np.array([[ 1 ]]), np.array([[ 2 ]]), np.array([[ 3 ]]), np.array([[ 4 ]]), np.array([[ 5 ]]), np.array([[ 6 ]]), np.array([[ 7 ]]), np.array([[ 8 ]]), np.array([[ 9 ]]), np.array([[ 10 ]]), np.array([[ 11 ]]), np.array([[ 12 ]]), np.array([[ 13 ]]), np.array([[ 14 ]]), np.array([[ 15 ]]), np.array([[ 16 ]])] # flatten the numpy array using reshape method flatten = np.array(list_array).reshape( - 1 ) # printing the flatten array print (flatten) |
Output :
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]