In this article, we are going to learn how can we create ‘fizzbuzz’ in JavaScript. In this, we will have a number and we have to print counting till that number, but multiples of 3 are replaced with “Fizz,” multiples of 5 with “Buzz,” and multiples of both with “FizzBuzz”.
Example:
Input: n = 3
Output: [1 2 Fizz]
Input: n = 5
Output: [1 2 Fizz 4 Buzz]
Table of Content
Using for… loop
In this approach, a FizzBuzz program can be created using a for loop that iterates from 1 to a specified number. Conditionally, replace multiples of 3 with “Fizz,” multiples of 5 with “Buzz,” and both with “FizzBuzz,” then print the result.
Example: This example shows the creation of fizbuzz program in JavaScript.
Javascript
let fizzBuzz = function (n) { const arr = [] for (i = 1; i <= n; i++) { if (i % 15 === 0) arr.push( "FizzBuzz" ) else if (i % 3 === 0) arr.push( "Fizz" ) else if (i % 5 === 0) arr.push( "Buzz" ) else arr.push(i.toString()) } return arr }; console.log(fizzBuzz(15)) |
[ '1', '2', 'Fizz', '4', 'Buzz', 'Fizz', '7', '8', 'Fizz', 'Buzz', '11', 'Fizz', '13', '14', 'FizzBuzz' ]
Time Complexity: O(n), where n is the input number.
Space Complexity: O(n), because of array creation.
Using recursion
In this approach, this recursive JavaScript function, myFunction, generates FizzBuzz values or numbers up to a given limit by checking divisibility conditions and accumulating results in an array.
Example: This example shows the creation of fizbuzz program in JavaScript.
Javascript
function myFunction(number, current = 1, results = []) { if (current > number) { return results; } let output = []; if (current % 3 === 0) output.push( 'Fizz' ); if (current % 5 === 0) output.push( 'Buzz' ); if (output.length === 0) { results.push(current); } else { results.push(output.join( '' )); } return myFunction(number, current + 1, results); } const fizzBuzzArray = myFunction(15); console.log(fizzBuzzArray); |
[ 1, 2, 'Fizz', 4, 'Buzz', 'Fizz', 7, 8, 'Fizz', 'Buzz', 11, 'Fizz', 13, 14, 'FizzBuzz' ]
Time Complexity: O(n), where n is the input number.
Space Complexity: O(n), because of a call stack in recursion.