Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFirst triangular number whose number of divisors exceeds N

First triangular number whose number of divisors exceeds N

Given a number N, find the first triangular number whose number of divisors exceeds N. Triangular numbers are sums of natural numbers, i. e., of the form x*(x+1)/2. First few triangular numbers are 1, 3, 6, 10, 15, 21, 28, …
Examples: 
 

Input: N = 2 
Output: 6 
6 is the first triangular number with more than 2 factors.
Input: N = 4 
Output: 28 
 

 

A naive solution is to iterate for every triangular number and count the number of divisors using the Sieve method. At any moment if the number of divisors exceeds the given number N, then we get our answer. If the triangular number which has more than N divisors is X, then the time complexity will be O(X * sqrt(X)) as pre-processing of primes is not possible in case of larger triangular numbers. The naive solution is important to understand in order to solve the problem more efficiently. 

An efficient solution will be to use the fact that the triangular number’s formula is x*(x+1)/2. The property that we will use is that k and k+1 are coprimes. We know that two co-primes have a distinct set of prime factors. There will be two cases when X is even and odd. 

  • When X is even, then X/2 and (X+1) will be considered as two numbers whose prime factorisation is to be find out.
  • When X is odd, then X and (X+1)/2 will be considered as two numbers whose prime factorisation is to be find out.

Hence the problem has been reduced to the just finding out prime factorization of smaller numbers, which reduces the time complexity significantly. We can reuse the prime factorization for x+1 in the subsequent iterations, and thus factorizing one number in each iteration will do. Iterating till the number of divisors exceeds N and considering the case of even and odd will give us the answer. 
Below is the implementation of the above approach. 

C++




// C++ efficient  program for counting the
// number of numbers <=N having exactly
// 9 divisors
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 100000;
 
// sieve method for prime calculation
bool prime[MAX + 1];
 
// Function to mark the primes
void sieve()
{
    memset(prime, true, sizeof(prime));
 
    // mark the primes
    for (int p = 2; p * p < MAX; p++)
        if (prime[p] == true)
 
            // mark the factors of prime as non prime
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
}
 
// Function for finding no. of divisors
int divCount(int n)
{
    // Traversing through all prime numbers
    int total = 1;
    for (int p = 2; p <= n; p++) {
        if (prime[p]) {
 
            // calculate number of divisor
            // with formula total div =
            // (p1+1) * (p2+1) *.....* (pn+1)
            // where n = (a1^p1)*(a2^p2)....
            // *(an^pn) ai being prime divisor
            // for n and pi are their respective
            // power in factorization
            int count = 0;
            if (n % p == 0) {
                while (n % p == 0) {
                    n = n / p;
                    count++;
                }
                total = total * (count + 1);
            }
        }
    }
    return total;
}
 
// Function to find the first triangular number
int findNumber(int n)
{
 
    if (n == 1)
        return 3;
 
    // initial number
    int i = 2;
 
    // initial count of divisors
    int count = 0;
 
    // prestore the value
    int second = 1;
    int first = 1;
 
    // iterate till we get the first triangular number
    while (count <= n) {
 
        // even
        if (i % 2 == 0) {
 
            // function call to count divisors
            first = divCount(i + 1);
 
            // multiply with previous value
            count = first * second;
        }
        // odd step
        else {
 
            // function call to count divisors
            second = divCount((i + 1) / 2);
 
            // multiply with previous value
            count = first * second;
        }
 
        i++;
    }
 
    return i * (i - 1) / 2;
}
 
// Driver Code
int main()
{
    int n = 4;
 
    // Call the sieve function for prime
    sieve();
    cout << findNumber(n);
 
 return 0;
}


Java




// Java efficient  program for counting the
// number of numbers <=N having exactly
// 9 divisors
 
public class GFG {
 
    final static int MAX = 100000;
       
    // sieve method for prime calculation
    static boolean prime[] = new boolean [MAX + 1];
       
    // Function to mark the primes
    static void sieve()
    {
        for(int i = 0 ; i <= MAX ; i++)
            prime[i] = true;
       
        // mark the primes
        for (int p = 2; p * p < MAX; p++)
            if (prime[p] == true)
       
                // mark the factors of prime as non prime
                for (int i = p * 2; i < MAX; i += p)
                    prime[i] = false;
    }
       
    // Function for finding no. of divisors
    static int divCount(int n)
    {
        // Traversing through all prime numbers
        int total = 1;
        for (int p = 2; p <= n; p++) {
            if (prime[p]) {
       
                // calculate number of divisor
                // with formula total div =
                // (p1+1) * (p2+1) *.....* (pn+1)
                // where n = (a1^p1)*(a2^p2)....
                // *(an^pn) ai being prime divisor
                // for n and pi are their respective
                // power in factorization
                int count = 0;
                if (n % p == 0) {
                    while (n % p == 0) {
                        n = n / p;
                        count++;
                    }
                    total = total * (count + 1);
                }
            }
        }
        return total;
    }
       
    // Function to find the first triangular number
    static int findNumber(int n)
    {
       
        if (n == 1)
            return 3;
       
        // initial number
        int i = 2;
       
        // initial count of divisors
        int count = 0;
       
        // prestore the value
        int second = 1;
        int first = 1;
       
        // iterate till we get the first triangular number
        while (count <= n) {
       
            // even
            if (i % 2 == 0) {
       
                // function call to count divisors
                first = divCount(i + 1);
       
                // multiply with previous value
                count = first * second;
            }
            // odd step
            else {
       
                // function call to count divisors
                second = divCount((i + 1) / 2);
       
                // multiply with previous value
                count = first * second;
            }
       
         i++;
        }
       
        return i * (i - 1) / 2;
    }
 
    public static void main(String args[])
    {
           int n = 4;
            
            // Call the sieve function for prime
            sieve();
            System.out.println(findNumber(n)); 
           
    }
    // This Code is contributed by ANKITRAI1
}
  


Python3




# Python 3 efficient program for counting the
# number of numbers <=N having exactly
# 9 divisors
 
from math import sqrt
MAX = 100000
 
prime = [ True for i in range(MAX + 1)]
# Function to mark the primes
def sieve():
 
    # mark the primes
    k = int(sqrt(MAX))
    for p in range(2,k,1):
        if (prime[p] == True):
 
            # mark the factors of prime as non prime
            for i in range(p * 2,MAX,p):
                prime[i] = False
 
# Function for finding no. of divisors
def divCount(n):
    # Traversing through all prime numbers
    total = 1
    for p in range(2,n+1,1):
        if (prime[p]):
            # calculate number of divisor
            # with formula total div =
            # (p1+1) * (p2+1) *.....* (pn+1)
            # where n = (a1^p1)*(a2^p2)....
            # *(an^pn) ai being prime divisor
            # for n and pi are their respective
            # power in factorization
            count = 0
            if (n % p == 0):
                while (n % p == 0):
                    n = n / p
                    count += 1
                 
                total = total * (count + 1)
             
    return total
 
# Function to find the first triangular number
def findNumber(n):
    if (n == 1):
        return 3
 
    # initial number
    i = 2
 
    # initial count of divisors
    count = 0
 
    # prestore the value
    second = 1
    first = 1
 
    # iterate till we get the first triangular number
    while (count <= n):
        # even
        if (i % 2 == 0):
            # function call to count divisors
            first = divCount(i + 1)
 
            # multiply with previous value
            count = first * second
         
        # odd step
 
        else:
            # function call to count divisors
            second = divCount(int((i + 1) / 2))
 
            # multiply with previous value
            count = first * second
         
        i += 1
    return i * (i - 1) / 2
 
# Driver Code
if __name__ == '__main__':
    n = 4
 
    # Call the sieve function for prime
    sieve()
    print(int(findNumber(n)))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# efficient  program for counting the
// number of numbers <=N having exactly
// 9 divisors
  
using System;
public class GFG {
  
    static int MAX = 100000;
        
    // sieve method for prime calculation
    static bool[] prime = new bool [MAX + 1];
        
    // Function to mark the primes
    static void sieve()
    {
        for(int i = 0 ; i <= MAX ; i++)
            prime[i] = true;
        
        // mark the primes
        for (int p = 2; p * p < MAX; p++)
            if (prime[p] == true)
        
                // mark the factors of prime as non prime
                for (int i = p * 2; i < MAX; i += p)
                    prime[i] = false;
    }
        
    // Function for finding no. of divisors
    static int divCount(int n)
    {
        // Traversing through all prime numbers
        int total = 1;
        for (int p = 2; p <= n; p++) {
            if (prime[p]) {
        
                // calculate number of divisor
                // with formula total div =
                // (p1+1) * (p2+1) *.....* (pn+1)
                // where n = (a1^p1)*(a2^p2)....
                // *(an^pn) ai being prime divisor
                // for n and pi are their respective
                // power in factorization
                int count = 0;
                if (n % p == 0) {
                    while (n % p == 0) {
                        n = n / p;
                        count++;
                    }
                    total = total * (count + 1);
                }
            }
        }
        return total;
    }
        
    // Function to find the first triangular number
    static int findNumber(int n)
    {
        
        if (n == 1)
            return 3;
        
        // initial number
        int i = 2;
        
        // initial count of divisors
        int count = 0;
        
        // prestore the value
        int second = 1;
        int first = 1;
        
        // iterate till we get the first triangular number
        while (count <= n) {
        
            // even
            if (i % 2 == 0) {
        
                // function call to count divisors
                first = divCount(i + 1);
        
                // multiply with previous value
                count = first * second;
            }
            // odd step
            else {
        
                // function call to count divisors
                second = divCount((i + 1) / 2);
        
                // multiply with previous value
                count = first * second;
            }
        
            i++;
        }
        
        return i * (i - 1) / 2;
    }
  
    public static void Main()
    {
           int n = 4;
             
            // Call the sieve function for prime
            sieve();
            Console.Write(findNumber(n)); 
            
    }
    
}
  


PHP




<?php
// PHP efficient program for counting the
// number of numbers <=N having exactly
// 9 divisors
$MAX = 10000;
 
// sieve method for $prime calculation
$prime = array_fill(0, $MAX + 1, true);
 
// Function to mark the primes
function sieve()
{
    global $prime;
    global $MAX;
     
    // mark the primes
    for ($p = 2; $p * $p < $MAX; $p++)
        if ($prime[$p] == true)
 
            // mark the factors of prime
            // as non prime
            for ($i = $p * 2;
                 $i < $MAX; $i += $p)
                $prime[$i] = false;
}
 
// Function for finding no. of divisors
function divCount($n)
{
    global $prime;
     
    // Traversing through all prime numbers
    $total = 1;
    for ($p = 2; $p <= $n; $p++)
    {
        if ($prime[$p])
        {
 
            // calculate number of divisor
            // with formula $total div =
            // (p1+1) * (p2+1) *.....* (pn+1)
            // where $n = (a1^p1)*(a2^p2)....
            // *(an^pn) ai being $prime divisor
            // for $n and pi are their respective
            // power in factorization
            $count = 0;
            if ($n % $p == 0)
            {
                while ($n % $p == 0)
                {
                    $n = $n / $p;
                    $count++;
                }
                $total = $total * ($count + 1);
            }
        }
    }
    return $total;
}
 
// Function to find the first
// triangular number
function findNumber($n)
{
 
    if ($n == 1)
        return 3;
 
    // initial number
    $i = 2;
 
    // initial count of divisors
    $count = 0;
 
    // prestore the value
    $second = 1;
    $first = 1;
 
    // iterate till we get the
    // first triangular number
    while ($count <= $n)
    {
 
        // even
        if ($i % 2 == 0)
        {
 
            // function call to $count divisors
            $first = divCount($i + 1);
 
            // multiply with previous value
            $count = $first * $second;
        }
         
        // odd step
        else
        {
 
            // function call to $count divisors
            $second = divCount(($i + 1) / 2);
 
            // multiply with previous value
            $count = $first * $second;
        }
 
        $i++;
    }
 
    return $i * ($i - 1) / 2;
}
 
// Driver Code
$n = 4;
 
// Call the sieve function for prime
sieve();
echo findNumber($n);
 
// This code is contributed by ihritik
?>


Javascript




<script>
// javascript efficient  program for counting the
// number of numbers <=N having exactly
// 9 divisors
const MAX = 100000;
 
// sieve method for prime calculation
let prime = new Array(MAX + 1).fill(0);
 
    // Function to mark the primes
    function sieve()
    {
        for (i = 0; i <= MAX; i++)
            prime[i] = true;
 
        // mark the primes
        for (p = 2; p * p < MAX; p++)
            if (prime[p] == true)
 
                // mark the factors of prime as non prime
                for (i = p * 2; i < MAX; i += p)
                    prime[i] = false;
    }
 
    // Function for finding no. of divisors
    function divCount(n)
    {
     
        // Traversing through all prime numbers
        var total = 1;
        for (p = 2; p <= n; p++) {
            if (prime[p]) {
 
                // calculate number of divisor
                // with formula total div =
                // (p1+1) * (p2+1) *.....* (pn+1)
                // where n = (a1^p1)*(a2^p2)....
                // *(an^pn) ai being prime divisor
                // for n and pi are their respective
                // power in factorization
                var count = 0;
                if (n % p == 0) {
                    while (n % p == 0) {
                        n = n / p;
                        count++;
                    }
                    total = total * (count + 1);
                }
            }
        }
        return total;
    }
 
    // Function to find the first triangular number
    function findNumber(n) {
 
        if (n == 1)
            return 3;
 
        // initial number
        var i = 2;
 
        // initial count of divisors
        var count = 0;
 
        // prestore the value
        var second = 1;
        var first = 1;
 
        // iterate till we get the first triangular number
        while (count <= n) {
 
            // even
            if (i % 2 == 0) {
 
                // function call to count divisors
                first = divCount(i + 1);
 
                // multiply with previous value
                count = first * second;
            }
            // odd step
            else {
 
                // function call to count divisors
                second = divCount((i + 1) / 2);
 
                // multiply with previous value
                count = first * second;
            }
 
            i++;
        }
 
        return i * (i - 1) / 2;
    }
 
    var n = 4;
 
    // Call the sieve function for prime
    sieve();
    document.write(findNumber(n));
 
// This code contributed by Rajput-Ji
</script>


Output

28

Time Complexity: O(N*logN), 

  • Sieve of eratosthenes will cost O(N*log(logN)) time, but 
  • we are using nested loops where the outer loop traverses N times and the inner loop traverses logN times as in every traversal we are decrementing by floor division of factor of n.

Auxiliary Space: O(105), as we are using extra space for primer array.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments