Saturday, January 4, 2025
Google search engine
HomeData Modelling & AIFirst N terms whose sum of digits is a multiple of 10

First N terms whose sum of digits is a multiple of 10

Given an integer N, the task is to print the first N terms whose sum of digits is a multiple of 10. First few terms of the series are 19, 28, 37, 46, 55, …
Examples: 
 

Input: N = 5 
Output: 19 28 37 46 55
Input: N = 10 
Output: 19 28 37 46 55 64 73 82 91 109 
 

 

Approach: It can be observed that to get the Nth term of the required series, find the sum of the digits of N. If the sum is already a multiple of 10 then append digit 0 in the end of N else append the minimum possible digit in the end such that the new sum of digits is a multiple of 10
 

For example, to get the 19th term, since the sum of digits is already a multiple of 10 then append 0 and 190 is the 19th term of the series. 
For N = 5, the minimum digit that can be appended to make the sum of digits as a multiple of 10 is 5 and 55 is the 5th term of the series. 
 

Below is the implementation of the above approach: 
 

C++




#include <bits/stdc++.h>
using namespace std;
 
const int TEN = 10;
 
// Function to return the
// sum of digits of n
int digitSum(int n)
{
    int sum = 0;
    while (n > 0) {
 
        // Add last digit to the sum
        sum += n % TEN;
 
        // Remove last digit
        n /= TEN;
    }
 
    return sum;
}
 
// Function to return the nth term
// of the required series
int getNthTerm(int n)
{
    int sum = digitSum(n);
 
    // If sum of digit is already
    // a multiple of 10 then append 0
    if (sum % TEN == 0)
        return (n * TEN);
 
    // To store the minimum digit
    // that must be appended
    int extra = TEN - (sum % TEN);
 
    // Return n after appending
    // the required digit
    return ((n * TEN) + extra);
}
 
// Function to print the first n terms
// of the required series
void firstNTerms(int n)
{
    for (int i = 1; i <= n; i++)
        cout << getNthTerm(i) << " ";
}
 
// Driver code
int main()
{
    int n = 10;
 
    firstNTerms(n);
 
    return 0;
}


Java




// Java implementation of the above approach
import java.io.*;
class GFG
{
    final static int TEN = 10;
     
    // Function to return the
    // sum of digits of n
    static int digitSum(int n)
    {
        int sum = 0;
        while (n > 0)
        {
     
            // Add last digit to the sum
            sum += n % TEN;
     
            // Remove last digit
            n /= TEN;
        }
        return sum;
    }
     
    // Function to return the nth term
    // of the required series
    static int getNthTerm(int n)
    {
        int sum = digitSum(n);
     
        // If sum of digit is already
        // a multiple of 10 then append 0
        if (sum % TEN == 0)
            return (n * TEN);
     
        // To store the minimum digit
        // that must be appended
        int extra = TEN - (sum % TEN);
     
        // Return n after appending
        // the required digit
        return ((n * TEN) + extra);
    }
     
    // Function to print the first n terms
    // of the required series
    static void firstNTerms(int n)
    {
        for (int i = 1; i <= n; i++)
            System.out.print(getNthTerm(i) + " ");
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 10;
     
        firstNTerms(n);
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 code for above implementation
TEN = 10
 
# Function to return the
# sum of digits of n
def digitSum(n):
    sum = 0
    while (n > 0):
 
        # Add last digit to the sum
        sum += n % TEN
 
        # Remove last digit
        n //= TEN
 
    return sum
 
# Function to return the nth term
# of the required series
def getNthTerm(n):
    sum = digitSum(n)
 
    # If sum of digit is already
    # a multiple of 10 then append 0
    if (sum % TEN == 0):
        return (n * TEN)
 
    # To store the minimum digit
    # that must be appended
    extra = TEN - (sum % TEN)
 
    # Return n after appending
    # the required digit
    return ((n * TEN) + extra)
 
# Function to print the first n terms
# of the required series
def firstNTerms(n):
    for i in range(1, n + 1):
        print(getNthTerm(i), end = " ")
 
# Driver code
n = 10
 
firstNTerms(n)
 
# This code is contributed by Mohit Kumar


C#




// C# Program to Find the Unique elements
// in linked lists
using System;
     
class GFG
{
    readonly static int TEN = 10;
     
    // Function to return the
    // sum of digits of n
    static int digitSum(int n)
    {
        int sum = 0;
        while (n > 0)
        {
     
            // Add last digit to the sum
            sum += n % TEN;
     
            // Remove last digit
            n /= TEN;
        }
        return sum;
    }
     
    // Function to return the nth term
    // of the required series
    static int getNthTerm(int n)
    {
        int sum = digitSum(n);
     
        // If sum of digit is already
        // a multiple of 10 then append 0
        if (sum % TEN == 0)
            return (n * TEN);
     
        // To store the minimum digit
        // that must be appended
        int extra = TEN - (sum % TEN);
     
        // Return n after appending
        // the required digit
        return ((n * TEN) + extra);
    }
     
    // Function to print the first n terms
    // of the required series
    static void firstNTerms(int n)
    {
        for (int i = 1; i <= n; i++)
            Console.Write(getNthTerm(i) + " ");
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int n = 10;
     
        firstNTerms(n);
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




const TEN = 10;
 
// Function to return the
// sum of digits of n
function digitSum(n)
{
    let sum = 0;
    while (n > 0) {
 
        // Add last digit to the sum
        sum += n % TEN;
 
        // Remove last digit
        n = Math.floor(n / TEN);
    }
 
    return sum;
}
 
// Function to return the nth term
// of the required series
function getNthTerm(n)
{
    let sum = digitSum(n);
 
    // If sum of digit is already
    // a multiple of 10 then append 0
    if (sum % TEN == 0)
        return (n * TEN);
 
    // To store the minimum digit
    // that must be appended
    let extra = TEN - (sum % TEN);
 
    // Return n after appending
    // the required digit
    return ((n * TEN) + extra);
}
 
// Function to print the first n terms
// of the required series
function firstNTerms(n)
{
    for (let i = 1; i <= n; i++)
        console.log(getNthTerm(i) + " ");
}
 
// Driver code
 
    let n = 10;
 
    firstNTerms(n);
 
 
// This code is contributed by Surbhi Tyagi.


Output

19 28 37 46 55 64 73 82 91 109



New Approach:- Another approach to solve this problem is to generate the series by iterating over all numbers from 1 to infinity and selecting only those numbers whose sum of digits is a multiple of 10.

Algorithm :-

  1. Define a function named digitSum that takes an integer n as input and returns the sum of its digits.
  2. Define a function named firstNTerms that takes an integer n as input and prints the first n terms of the required series.
  3. Inside the firstNTerms function, initialize a variable count to 0.
  4. Use a for loop to iterate over all integers from 1 to infinity until n terms whose sum of digits is a multiple of 10 are found.
  5. Inside the loop, call the digitSum function for the current integer I.
  6. If the sum of digits of i is a multiple of 10, print i and increment the count variable.
  7. If count reaches n, exit the loop and return.
  8. In the main function, call the firstNTerms function with the value of n to print the first n terms of the required series.

Here’s the implementation of this approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
  
// Function to return the sum of digits of n
  int
digitSum (int n)
{
   
int sum = 0;
   
while (n > 0)
    {
       
    // Add last digit to the sum
    sum += n % 10;
       
  
    // Remove last digit
    n /= 10;
     
}
   
  
return sum;
 
}
 
 
  
// Function to print the first n terms of the required series
  void
firstNTerms (int n)
{
   
int count = 0;
   
for (int i = 1; count < n; i++)
    {
       
if (digitSum (i) % 10 == 0)
    {
       
cout << i << " ";
       
count++;
     
}
     
}
 
}
 
 
  
// Driver code
  int
main ()
{
   
int n = 10;
   
firstNTerms (n);
   
  
return 0;
 
}


Java




import java.util.*;
 
public class Main {
    // Function to return the sum of digits of n
    public static int digitSum(int n)
    {
        int sum = 0;
        while (n > 0) {
            // Add last digit to the sum
            sum += n % 10;
 
            // Remove last digit
            n /= 10;
        }
        return sum;
    }
 
    // Function to print the first n terms of the required
    // series
    public static void firstNTerms(int n)
    {
        int count = 0;
        for (int i = 1; count < n; i++) {
            if (digitSum(i) % 10 == 0) {
                System.out.print(i + " ");
                count++;
            }
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 10;
        firstNTerms(n);
    }
}


Python3




def digitSum(n):
    sum = 0
    while n > 0:
        # Add last digit to the sum
        sum += n % 10
        # Remove last digit
        n //= 10
    return sum
 
 
def firstNTerms(n):
    count = 0
    i = 1
    while count < n:
        if digitSum(i) % 10 == 0:
            print(i, end=" ")
            count += 1
        i += 1
 
 
n = 10
firstNTerms(n)


C#




// C# program for the above approach
using System;
 
public class GFG
{
    // Function to return the sum of digits of n
    public static int DigitSum(int n)
    {
        int sum = 0;
        while (n > 0)
        {
            // Add the last digit to the sum
            sum += n % 10;
 
            // Remove last digit
            n /= 10;
        }
        return sum;
    }
 
    // Function to print the first n terms of the required series
    public static void FirstNTerms(int n)
    {
        int count = 0;
        for (int i = 1; count < n; i++)
        {
            if (DigitSum(i) % 10 == 0)
            {
                Console.Write(i + " ");
                count++;
            }
        }
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int n = 10;
        FirstNTerms(n);
    }
}


Javascript




// Function to return the sum of digits of n
function digitSum(n) {
    let sum = 0;
    while (n > 0) {
        // Add the last digit to the sum
        sum += n % 10;
 
        // Remove the last digit
        n = Math.floor(n / 10);
    }
    return sum;
}
 
// Function to print the first n terms of the required series
function firstNTerms(n) {
    let count = 0;
    for (let i = 1; count < n; i++) {
        if (digitSum(i) % 10 === 0) {
            console.log(i + " ");
            count++;
        }
    }
}
 
// Driver Code
const n = 10;
firstNTerms(n);


Output

19 28 37 46 55 64 73 82 91 109 



“In this approach, we first define a function digitSum to calculate the sum of digits of a given number. Then, we iterate over all numbers from 1 to infinity and check if the sum of digits of each number is a multiple of 10. If it is, we print that number and increment the count of printed terms until we reach the desired number of terms.”

Time complexity:

The digitSum function runs in O(log10(n)) time complexity as it iterates over the digits of the number and removes one digit in each iteration.

The firstNTerms function iterates over all numbers from 1 to infinity until it finds n terms whose sum of digits is a multiple of 10. In the worst case, it may need to iterate over all integers up to 10n to find n terms, as every tenth integer has a sum of digits that is a multiple of 10. Therefore, the time complexity of this function is O(n log n).

Space complexity:

The digitSum function uses a constant amount of extra memory to store the sum variable. The firstNTerms function uses a constant amount of extra memory to store the count variable. Therefore, the space complexity of both functions is O(1).

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments