Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFinding the Nth term in a sequence formed by removing digit K...

Finding the Nth term in a sequence formed by removing digit K from natural numbers

Given the integers N, K and an infinite sequence of natural numbers where all the numbers containing the digit K (1<=K<=9) are removed. The task is to return the Nth number of this sequence.

Example:

Input: N = 12, K = 2
Output: 14
Explanation: The sequence generated for the above input would be like this: 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, up to infinity

Input: N = 10, K = 1
Output: 22

 

Naive Approach: The basic approach to solving the above problem would be to iterate up to N and keep excluding all numbers less than N containing the given digit K. Finally, print the Nth natural number obtained.

  • Initialize count to 0 and i to 1
  • While count is less than n:
    • Check if i contains the digit k by calling the containsDigit function
    • If i does not contain k:
      • Increment count by 1
    •  If count is equal to n:
      • Return i as the nth natural number that does not contain k.
    • Otherwise, increment i by 1 and continue to the next iteration of the loop
    • If we have iterated up to N without finding the nth natural number that does not contain k, return -1 (this is an error condition)
  • containsDigit function:
    • Initialize a variable called numCopy to the value of num
    • While numCopy is greater than 0:
      • Check if the last digit of numCopy is equal to k
      • If it is, return true
      • Otherwise, divide numCopy by 10 to remove the last digit.
    • If we have checked all the digits in num and have not found k, return false.

C++




#include <iostream>
using namespace std;
 
bool containsDigit(int num, int digit)
{
    while (num > 0) {
        if (num % 10 == digit) {
            return true;
        }
        num /= 10;
    }
    return false;
}
 
int findNthNumber(int n, int k)
{
    int count = 0;
    int i = 1;
    while (count < n) {
        if (!containsDigit(i, k)) {
            count++;
        }
        if (count == n) {
            return i;
        }
        i++;
    }
    return -1;
}
 
int main()
{
    int n = 12;
    int k = 2;
    int nthNumber = findNthNumber(n, k);
    cout << "The " << n
         << "th natural number not containing " << k
         << " is: " << nthNumber << endl;
    return 0;
}


Java




// Java program for the above approach
public class Main {
 
    public static boolean containsDigit(int num, int digit) {
        // Check if the given number contains the given digit
        while (num > 0) {
            if (num % 10 == digit) {
                return true;
            }
            num /= 10; // Integer division
        }
        return false;
    }
     
    // Find the nth natural number that does not contain the digit k
    public static int findNthNumber(int n, int k) {
        int count = 0;
        int i = 1;
        while (count < n) {
            if (!containsDigit(i, k)) {
                count++;
            }
            if (count == n) {
                return i;
            }
            i++;
        }
        return -1;
    }
 
    public static void main(String[] args) {
        int n = 12;
        int k = 2;
        int nthNumber = findNthNumber(n, k);
        System.out.println("The " + n +
                           "th natural number not containing " +
                            k + " is: " + nthNumber);
    }
}


Python3




# code
def contains_digit(num, digit):
    # Check if the given number contains the given digit
    while num > 0:
        if num % 10 == digit:
            return True
        num //= 10  # Integer division
    return False
 
 
def find_nth_number(n, k):
    # Find the nth natural number that does not contain the digit k
    count = 0
    i = 1
    while count < n:
        if not contains_digit(i, k):
            count += 1
        if count == n:
            return i
        i += 1
    return -1
 
 
if __name__ == "__main__":
    n = 12
    k = 2
    nth_number = find_nth_number(n, k)
    print(f"The {n}th natural number not containing {k} is: {nth_number}")


C#




using System;
 
public class GFG
{
    public static bool ContainsDigit(int num, int digit)
    {
        // Check if the given number contains the given digit
        while (num > 0)
        {
            if (num % 10 == digit)
            {
                return true;
            }
            num /= 10; // Integer division
        }
        return false;
    }
 
    // Find the nth natural number that does not contain the digit k
    public static int FindNthNumber(int n, int k)
    {
        int count = 0;
        int i = 1;
        while (count < n)
        {
            if (!ContainsDigit(i, k))
            {
                count++;
            }
            if (count == n)
            {
                return i;
            }
            i++;
        }
        return -1;
    }
 
    public static void Main(string[] args)
    {
        int n = 12;
        int k = 2;
        int nthNumber = FindNthNumber(n, k);
        Console.WriteLine("The " + n +
                           "th natural number not containing " +
                            k + " is: " + nthNumber);
    }
}
 
// This code is contributed by guptapratik


Javascript




// Nikunj Sonigara
 
function containsDigit(num, digit) {
    while (num > 0) {
        if (num % 10 === digit) {
            return true;
        }
        num = Math.floor(num / 10);
    }
    return false;
}
 
function findNthNumber(n, k) {
    let count = 0;
    let i = 1;
    while (count < n) {
        if (!containsDigit(i, k)) {
            count++;
        }
        if (count === n) {
            return i;
        }
        i++;
    }
    return -1;
}
 
function main() {
    let n = 12;
    let k = 2;
    let nthNumber = findNthNumber(n, k);
    console.log("The " + n +
                "th natural number not containing " +
                 k + " is: " + nthNumber);
}
 
main();


Output

The 12th natural number not containing 2 is: 14







Time Complexity: O(N*d), where N is the input value and d is the number of digits in N.
Auxiliary Space: O(1) 

Efficient Approach: The efficient approach to solve this is inspired by the Nth natural number after removing all numbers consisting of the digit 9
The given problem can be solved by converting the value of K to base 9 forms if it is more than 8. Below steps can be followed:

  • Calculate the Nth natural number to base 9 format
  • Increment 1 to every digit of the base 9 number which is greater than or equal to K
  • The next number is the desired answer

Below is the code for the above approach:

C++




// C++ implementation for the above approach
 
#include <iostream>
using namespace std;
long long convertToBase9(long long n)
{
    long long ans = 0;
 
    // Denotes the digit place
    long long a = 1;
 
    // Method to convert any number
    // to binary equivalent
    while (n > 0) {
        ans += (a * (n % 9));
        a *= 10;
        n /= 9;
    }
    return ans;
}
 
long long getNthnumber(long long base9, long long K)
{
    long long ans = 0;
 
    // denotes the current digits place
    long long a = 1;
    while (base9 > 0) {
        int cur = base9 % 10;
 
        // If current digit is >= K
        // increment its value by 1
        if (cur >= K) {
            ans += a * (cur + 1);
        }
 
        // Else add the digit as it is
        else {
            ans += a * cur;
        }
        base9 /= 10;
 
        // Move to the next digit
        a *= 10;
    }
    return ans;
}
 
// Driver code
int main()
{
    long long N = 12, K = 2;
    long long base9 = convertToBase9(N);
    cout << getNthnumber(base9, K);
    return 0;
}


Java




// Java implementation for the above approach
import java.io.*;
 
class GFG {
 
    static long convertToBase9(long n)
    {
        long ans = 0;
 
        // Denotes the digit place
        long a = 1;
 
        // Method to convert any number
        // to binary equivalent
        while (n > 0) {
            ans += (a * (n % 9));
            a *= 10;
            n /= 9;
        }
        return ans;
    }
 
    static long getNthnumber(long base9, long K)
    {
        long ans = 0;
 
        // denotes the current digits place
        long a = 1;
        while (base9 > 0) {
            int cur = (int)(base9 % 10);
 
            // If current digit is >= K
            // increment its value by 1
            if (cur >= K) {
                ans += a * (cur + 1);
            }
 
            // Else add the digit as it is
            else {
                ans += a * cur;
            }
            base9 /= 10;
 
            // Move to the next digit
            a *= 10;
        }
        return ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        long N = 10, K = 1;
        long base9 = convertToBase9(N);
        System.out.println(getNthnumber(base9, K));
    }
}
 
//  This code is contributed by Dharanendra L V.


Python3




# Python 3 implementation for the above approach
def convertToBase9(n):
    ans = 0
 
    # Denotes the digit place
    a = 1
 
    # Method to convert any number
    # to binary equivalent
    while(n > 0):
        ans += (a * (n % 9))
        a *= 10
        n //= 9
    return ans
 
 
def getNthnumber(base9, K):
    ans = 0
 
    # denotes the current digits place
    a = 1
    while (base9 > 0):
        cur = base9 % 10
 
        # If current digit is >= K
        # increment its value by 1
        if (cur >= K):
            ans += a * (cur + 1)
 
        # Else add the digit as it is
        else:
            ans += a * cur
        base9 //= 10
 
        # Move to the next digit
        a *= 10
    return ans
 
 
# Driver code
if __name__ == '__main__':
    N = 10
    K = 1
    base9 = convertToBase9(N)
    print(getNthnumber(base9, K))
 
    # This code is contributed by SURENDRA_GANGWAR.


C#




// C# implementation for the above approach
using System;
 
class GFG {
 
    static long convertToBase9(long n)
    {
        long ans = 0;
 
        // Denotes the digit place
        long a = 1;
 
        // Method to convert any number
        // to binary equivalent
        while (n > 0) {
            ans += (a * (n % 9));
            a *= 10;
            n /= 9;
        }
        return ans;
    }
 
    static long getNthnumber(long base9, long K)
    {
        long ans = 0;
 
        // denotes the current digits place
        long a = 1;
        while (base9 > 0) {
            int cur = (int)(base9 % 10);
 
            // If current digit is >= K
            // increment its value by 1
            if (cur >= K) {
                ans += a * (cur + 1);
            }
 
            // Else add the digit as it is
            else {
                ans += a * cur;
            }
            base9 /= 10;
 
            // Move to the next digit
            a *= 10;
        }
        return ans;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        long N = 10, K = 1;
        long base9 = convertToBase9(N);
        Console.Write(getNthnumber(base9, K));
    }
}
 
//  This code is contributed by shivanisinghss2110


Javascript




<script>
// Javascript implementation for the above approach
function convertToBase9(n)
{
  let ans = 0;
 
  // Denotes the digit place
  let a = 1;
 
  // Method to convert any number
  // to binary equivalent
  while (n > 0) {
    ans += a * (n % 9);
    a *= 10;
    n = Math.floor(n / 9);
  }
  return ans;
}
 
function getNthnumber(base9, K) {
  let ans = 0;
 
  // denotes the current digits place
  let a = 1;
  while (base9 > 0) {
    let cur = base9 % 10;
 
    // If current digit is >= K
    // increment its value by 1
    if (cur >= K) {
      ans += a * (cur + 1);
    }
 
    // Else add the digit as it is
    else {
      ans += a * cur;
    }
    base9 = Math.floor(base9 / 10);
 
    // Move to the next digit
    a *= 10;
  }
  return ans;
}
 
// Driver code
let N = 10,
  K = 1;
let base9 = convertToBase9(N);
document.write(getNthnumber(base9, K));
 
// This code is contributed by gfgking.
</script>


Output

14







Time Complexity: O(log9N)
Auxiliary Space: O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments