Given a N x N matrix, determine the maximum K such that K x K is a submatrix with all equal elements i.e., all the elements in this submatrix must be same.
Constraints:
- 1 <= N <= 1000
- 0 <= Ai , j <= 109
Examples:
Input : a[][] = {{2, 3, 3}, {2, 3, 3}, {2, 2, 2}} Output : 2 Explanation: A 2x2 matrix is formed from index A0,1 to A1,2 Input : a[][] = {{9, 9, 9, 8}, {9, 9, 9, 6}, {9, 9, 9, 3}, {2, 2, 2, 2} Output : 3 Explanation : A 3x3 matrix is formed from index A0,0 to A2,2
Method I ( Naive approach ):
We can easily find all the square submatrices in O(n3) time and check whether each submatrix contains equal elements or not in O(n2) time Which makes the total running time of the algorithm as O(n5).
Method II ( Dynamic Programming ):
For each cell (i, j), we store the largest value of K such that K x K is a submatrix with all equal elements and position of (i, j) being the bottom-right most element.
And DPi,j depends upon {DPi-1, j, DPi, j-1, DPi-1, j-1}
If Ai, j is equal to {Ai-1, j, Ai, j-1, Ai-1, j-1}, all the three values: DPi, j = min(DPi-1, j, DPi, j-1, DPi-1, j-1) + 1 Else DPi, j = 1 // Matrix Size 1 The answer would be the maximum of all DPi, j's
Below is the implementation of above steps.
C++
// C++ program to find maximum K such that K x K // is a submatrix with equal elements. #include<bits/stdc++.h> #define Row 6 #define Col 6 using namespace std; // Returns size of the largest square sub-matrix // with all same elements. int largestKSubmatrix( int a[][Col]) { int dp[Row][Col]; memset (dp, sizeof (dp), 0); int result = 0; for ( int i = 0 ; i < Row ; i++) { for ( int j = 0 ; j < Col ; j++) { // If elements is at top row or first // column, it wont form a square // matrix's bottom-right if (i == 0 || j == 0) dp[i][j] = 1; else { // Check if adjacent elements are equal if (a[i][j] == a[i-1][j] && a[i][j] == a[i][j-1] && a[i][j] == a[i-1][j-1] ) dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1] ) + 1; // If not equal, then it will form a 1x1 // submatrix else dp[i][j] = 1; } // Update result at each (i,j) result = max(result, dp[i][j]); } } return result; } // Driven Program int main() { int a[Row][Col] = { 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 7, 4, 1, 2, 7, 7, 7, 4, 4, 4, 7, 7, 7, 4, 5, 5, 5, 1, 2, 7, 8, 7, 9, 4, 4, 4 }; cout << largestKSubmatrix(a) << endl; return 0; } |
Java
// Java program to find maximum // K such that K x K is a // submatrix with equal elements. import java.util.*; import java.io.*; class GFG { static int Row = 6 , Col = 6 ; // Returns size of the largest // square sub-matrix with // all same elements. static int largestKSubmatrix( int [][]a) { int [][]dp = new int [Row][Col]; int result = 0 ; for ( int i = 0 ; i < Row ; i++) { for ( int j = 0 ; j < Col ; j++) { // If elements is at top // row or first column, // it wont form a square // matrix's bottom-right if (i == 0 || j == 0 ) dp[i][j] = 1 ; else { // Check if adjacent // elements are equal if (a[i][j] == a[i - 1 ][j] && a[i][j] == a[i][j - 1 ] && a[i][j] == a[i - 1 ][j - 1 ]) { dp[i][j] = (dp[i - 1 ][j] > dp[i][j - 1 ] && dp[i - 1 ][j] > dp[i - 1 ][j - 1 ] + 1 ) ? dp[i - 1 ][j] : (dp[i][j - 1 ] > dp[i - 1 ][j] && dp[i][j - 1 ] > dp[i - 1 ][j - 1 ] + 1 ) ? dp[i][j - 1 ] : dp[i - 1 ][j - 1 ] + 1 ; } // If not equal, then it // will form a 1x1 submatrix else dp[i][j] = 1 ; } // Update result at each (i,j) result = result > dp[i][j] ? result : dp[i][j]; } } return result; } // Driver code public static void main(String[] args) { int [][]a = {{ 2 , 2 , 3 , 3 , 4 , 4 }, { 5 , 5 , 7 , 7 , 7 , 4 }, { 1 , 2 , 7 , 7 , 7 , 4 }, { 4 , 4 , 7 , 7 , 7 , 4 }, { 5 , 5 , 5 , 1 , 2 , 7 }, { 8 , 7 , 9 , 4 , 4 , 4 }}; System.out.println(largestKSubmatrix(a)); } } // This code is contributed // by ChitraNayal |
C#
// C# program to find maximum // K such that K x K is a // submatrix with equal elements. using System; class GFG { static int Row = 6, Col = 6; // Returns size of the // largest square sub-matrix // with all same elements. static int largestKSubmatrix( int [,] a) { int [,] dp = new int [Row, Col]; int result = 0; for ( int i = 0 ; i < Row ; i++) { for ( int j = 0 ; j < Col ; j++) { // If elements is at top // row or first column, // it wont form a square // matrix's bottom-right if (i == 0 || j == 0) dp[i, j] = 1; else { // Check if adjacent // elements are equal if (a[i, j] == a[i - 1, j] && a[i, j] == a[i, j - 1] && a[i, j] == a[i - 1, j - 1]) { dp[i, j] = (dp[i - 1, j] > dp[i, j - 1] && dp[i - 1, j] > dp[i - 1, j - 1] + 1) ? dp[i - 1, j] : (dp[i, j - 1] > dp[i - 1, j] && dp[i, j - 1] > dp[i - 1, j - 1] + 1) ? dp[i, j - 1] : dp[i - 1, j - 1] + 1; } // If not equal, then // it will form a 1x1 // submatrix else dp[i, j] = 1; } // Update result at each (i,j) result = result > dp[i, j] ? result : dp[i, j]; } } return result; } // Driver Code public static void Main() { int [,] a = {{2, 2, 3, 3, 4, 4}, {5, 5, 7, 7, 7, 4}, {1, 2, 7, 7, 7, 4}, {4, 4, 7, 7, 7, 4}, {5, 5, 5, 1, 2, 7}, {8, 7, 9, 4, 4, 4}}; Console.Write(largestKSubmatrix(a)); } } // This code is contributed // by ChitraNayal |
Python 3
# Python 3 program to find # maximum K such that K x K # is a submatrix with equal # elements. Row = 6 Col = 6 # Returns size of the # largest square sub-matrix # with all same elements. def largestKSubmatrix(a): dp = [[ 0 for x in range (Row)] for y in range (Col)] result = 0 for i in range (Row ): for j in range (Col): # If elements is at top # row or first column, # it wont form a square # matrix's bottom-right if (i = = 0 or j = = 0 ): dp[i][j] = 1 else : # Check if adjacent # elements are equal if (a[i][j] = = a[i - 1 ][j] and a[i][j] = = a[i][j - 1 ] and a[i][j] = = a[i - 1 ][j - 1 ]): dp[i][j] = min ( min (dp[i - 1 ][j], dp[i][j - 1 ]), dp[i - 1 ][j - 1 ] ) + 1 # If not equal, then # it will form a 1x1 # submatrix else : dp[i][j] = 1 # Update result at each (i,j) result = max (result, dp[i][j]) return result # Driver Code a = [[ 2 , 2 , 3 , 3 , 4 , 4 ], [ 5 , 5 , 7 , 7 , 7 , 4 ], [ 1 , 2 , 7 , 7 , 7 , 4 ], [ 4 , 4 , 7 , 7 , 7 , 4 ], [ 5 , 5 , 5 , 1 , 2 , 7 ], [ 8 , 7 , 9 , 4 , 4 , 4 ]]; print (largestKSubmatrix(a)) # This code is contributed # by ChitraNayal |
PHP
<?php // Java program to find maximum // K such that K x K is a // submatrix with equal elements. $Row = 6; $Col = 6; // Returns size of the largest // square sub-matrix with // all same elements. function largestKSubmatrix(& $a ) { global $Row , $Col ; $result = 0; for ( $i = 0 ; $i < $Row ; $i ++) { for ( $j = 0 ; $j < $Col ; $j ++) { // If elements is at // top row or first // column, it wont form // a square matrix's // bottom-right if ( $i == 0 || $j == 0) $dp [ $i ][ $j ] = 1; else { // Check if adjacent // elements are equal if ( $a [ $i ][ $j ] == $a [ $i - 1][ $j ] && $a [ $i ][ $j ] == $a [ $i ][ $j - 1] && $a [ $i ][ $j ] == $a [ $i - 1][ $j - 1] ) $dp [ $i ][ $j ] = min(min( $dp [ $i - 1][ $j ], $dp [ $i ][ $j - 1]), $dp [ $i - 1][ $j - 1] ) + 1; // If not equal, then it // will form a 1x1 submatrix else $dp [ $i ][ $j ] = 1; } // Update result at each (i,j) $result = max( $result , $dp [ $i ][ $j ]); } } return $result ; } // Driver Code $a = array ( array (2, 2, 3, 3, 4, 4), array (5, 5, 7, 7, 7, 4), array (1, 2, 7, 7, 7, 4), array (4, 4, 7, 7, 7, 4), array (5, 5, 5, 1, 2, 7), array (8, 7, 9, 4, 4, 4)); echo largestKSubmatrix( $a ); // This code is contributed // by ChitraNayal ?> |
Javascript
<script> // Javascript program to find maximum // K such that K x K is a // submatrix with equal elements. let Row = 6, Col = 6; // Returns size of the largest // square sub-matrix with // all same elements. function largestKSubmatrix(a) { let dp = new Array(Row); for (let i = 0; i < Row; i++) { dp[i] = new Array(Col); for (let j = 0; j < Col; j++) { dp[i][j] = 0; } } let result = 0; for (let i = 0 ; i < Row ; i++) { for (let j = 0 ; j < Col ; j++) { // If elements is at top // row or first column, // it wont form a square // matrix's bottom-right if (i == 0 || j == 0) dp[i][j] = 1; else { // Check if adjacent // elements are equal if (a[i][j] == a[i - 1][j] && a[i][j] == a[i][j - 1] && a[i][j] == a[i - 1][j - 1]) { dp[i][j] = (dp[i - 1][j] > dp[i][j - 1] && dp[i - 1][j] > dp[i - 1][j - 1] + 1) ? dp[i - 1][j] : (dp[i][j - 1] > dp[i - 1][j] && dp[i][j - 1] > dp[i - 1][j - 1] + 1) ? dp[i][j - 1] : dp[i - 1][j - 1] + 1; } // If not equal, then it // will form a 1x1 submatrix else dp[i][j] = 1; } // Update result at each (i,j) result = result > dp[i][j] ? result : dp[i][j]; } } return result; } // Driver code let a = [[ 2, 2, 3, 3, 4, 4], [ 5, 5, 7, 7, 7, 4], [ 1, 2, 7, 7, 7, 4], [ 4, 4, 7, 7, 7, 4], [ 5, 5, 5, 1, 2, 7], [ 8, 7, 9, 4, 4, 4]]; document.write(largestKSubmatrix(a)); // This code is contributed by avanitrachhadiya2155 </script> |
3
Time Complexity : O(Row * Col)
Auxiliary Space : O(Row * Col)
This article is contributed by Shubham Gupta. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!