Friday, January 3, 2025
Google search engine
HomeData Modelling & AIFinding the best fit rectangle that covers a given point

Finding the best fit rectangle that covers a given point

We are provided with a 2D plane and a point (X     Y     ). We have to find a rectangle (X_1     Y_1     X_2     Y_2     ) such that it
encompasses the given point (X     Y     ). The rectangle chosen must satisfy the given condition \frac{length}{breadth}=\frac{a}{b}     . If
multiple rectangles are possible the we must choose the one with the least Euclid distance between the center of the rectangle and the point (X     Y     ). 
 

Image Source – codeforces 
Examples : 

Input : 70 10 20 5 5 3
Output :12 0 27 9

Input :100 100 32 63 2 41
Output :30 18 34 100

 

The logic behind the problem is as follows. First of all we reduce \frac{a}{b}     to lowest irreducible form by dividing a and b by gcd(a, b)     . We think of the problem in two separate dimensions X     and Y     independently. We find out the min(n/a, m/b)     after dividing a and b by their gcd to find the maximum distance that we can cover safely by staying in the range of (0, 0) to (n, m)     . Since we have to find rectangle with minimum distance of its center from the point (X     Y     ), therefore we start with the assumption that point (X     Y     ) is our center. Then we find X_1     and X_2     by subtracting and adding half of length to X     . If either X_1     or X_2     goes out of range then we shift the coordinates accordingly to bring it inside the range (0, 0) to (n, m)     . Similarly we proceed to calculate Y_1     and Y_2
For the first example according to above logic the answer comes out to be 12, 0, 27, 9     .
 

C++




#include <cmath>
#include <iostream>
using namespace std;
 
// Function to calculate
// GCD of a and b
int gcd(int a, int b)
{
    if (a == 0)
        return b;
    else
        return gcd(b % a, a);
}
 
// Function to calculate the
// coordinates of the rectangle
void solve(int n, int m, int x, int y, int a, int b)
{
 
    int k, g;
    int x1, y1, x2, y2;
    g = gcd(a, b);
 
    // Reducing the ratio to
    // lowest irreducible form
    a /= g;
    b /= g;
 
    // Finding the maximum multiple
    // of length that can be chosen
    k = min(n / a, m / b);
 
    // Assuming the point (X, Y) as the
    // center of the required rectangle
    // Finding the lower X coordinate by
    // subtracting half of total length from X
    x1 = x - (k * a - k * a / 2);
 
    // Finding the upper X coordinate
    // by adding half of total length to X
    x2 = x + k * a / 2;
 
    // Finding lower Y coordinate by
    // subtracting half of breadth from Y
    y1 = y - (k * b - k * b / 2);
 
    // Finding upper Y coordinate
    // by adding half of breadth to Y
    y2 = y + k * b / 2;
 
    // If lower X coordinate
    // goes below 0 then we shift
    // the lower coordinate to 0
    // and the upper coordinate
    // accordingly to bring lower
    // coordinate in range
    // and to keep center as
    // close as possible to X, Y
    if (x1 < 0) {
        x2 -= x1;
        x1 = 0;
    }
 
    // If upper X coordinate goes
    // beyond n, then we shift the
    // upper X coordinate ton
    // and we shift the lower coordinate
    // accordingly to bring the upper
    // coordinate in range
    if (x2 > n) {
        x1 -= x2 - n;
        x2 = n;
    }
 
    // If lower Y coordinate goes
    // below 0 then we shift the
    // lower coordinate to 0
    // and the upper coordinate
    // accordingly to bring lower
    // coordinate in range
    // and to keep center as
    // close as possible to X, Y
    if (y1 < 0) {
        y2 -= y1;
        y1 = 0;
    }
 
    // If upper Y coordinate goes
    // beyond n, then we shift the
    // upper X coordinate
    // to n and we shift the lower
    // coordinate accordingly to
    // bring the upper
    // coordinate in range
    if (y2 > m) {
        y1 -= y2 - m;
        y2 = m;
    }
 
    cout << x1 << " " << y1 << " " << x2 << " " << y2
         << endl;
}
 
// Driver function
int main()
{
    int n = 70, m = 10, x = 20, y = 5, a = 5, b = 3;
    solve(n, m, x, y, a, b);
    return 0;
}


Java




class GFG {
 
    // Function to calculate
    // GCD of a and b
    public static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
        else
            return gcd(b % a, a);
    }
 
    // Function to calculate the
    // coordinates of the rectangle
    public static void solve(int n, int m, int x, int y,
                             int a, int b)
    {
 
        int k, g;
        int x1, y1, x2, y2;
        g = gcd(a, b);
 
        // Reducing the ratio to
        // lowest irreducible form
        a /= g;
        b /= g;
 
        // Finding the maximum multiple
        // of length that can be chosen
        k = Math.min(n / a, m / b);
 
        // Assuming the point (X, Y) as the
        // centre of the required rectangle
        // Finding the lower X coordinate by
        // subtracting half of total length
        // from X
        x1 = x - (k * a - k * a / 2);
 
        // Finding the upper X coordinate
        // by adding half of total length
        // to X
        x2 = x + k * a / 2;
 
        // Finding lower Y coordinate by
        // subtracting half of breadth
        // from Y
        y1 = y - (k * b - k * b / 2);
 
        // Finding upper Y coordinate
        // by adding half of breadth
        // to Y
        y2 = y + k * b / 2;
 
        // If lower X coordinate
        // goes below 0 then we shift
        // the lower coordinate to 0
        // and the upper coordinate
        // accordingly to bring lower
        // coordinate in range
        // and to keep center as
        // close as possible to X, Y
        if (x1 < 0) {
            x2 -= x1;
            x1 = 0;
        }
 
        // If upper X coordinate goes
        // beyond n, then we shift the
        // upper X coordinate ton
        // and we shift the lower coordinate
        // accordingly to bring the upper
        // coordinate in range
        if (x2 > n) {
            x1 -= x2 - n;
            x2 = n;
        }
 
        // If lower Y coordinate goes
        // below 0 then we shift the
        // lower coordinate to 0
        // and the upper coordinate
        // accordingly to bring lower
        // coordinate in range
        // and to keep center as
        // close as possible to X, Y
        if (y1 < 0) {
            y2 -= y1;
            y1 = 0;
        }
 
        // If upper Y coordinate goes
        // beyond n, then we shift the
        // upper X coordinate
        // to n and we shift the lower
        // coordinate accordingly to
        // bring the upper
        // coordinate in range
        if (y2 > m) {
            y1 -= y2 - m;
            y2 = m;
        }
 
        System.out.println(x1 + " " + y1 + " " + x2 + " "
                           + y2);
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int n = 70, m = 10;
        int x = 20, y = 5;
        int a = 5, b = 3;
        solve(n, m, x, y, a, b);
    }
}
 
// This code is contributed by - vkz6198


Python 3




# Function to calculate
# GCD of a and b
 
 
def gcd(a, b):
 
    if (a == 0):
        return b
    else:
        return gcd(b % a, a)
 
# Function to calculate the
# coordinates of the rectangle
 
 
def solve(n, m, x, y, a, b):
 
    g = int(gcd(a, b))
 
    # Reducing the ratio to
    # lowest irreducible form
    a /= g
    b /= g
 
    # Finding the maximum multiple
    # of length that can be chosen
    k = int(min(n / a, m / b))
 
    # Assuming the point (X, Y) as the
    # centre of the required rectangle
    # Finding the lower X coordinate by
    # subtracting half of total length
    # from X
    x1 = int(x - (k * a - k * a / 2))
 
    # Finding the upper X coordinate
    # by adding half of total length
    # to X
    x2 = int(x + k * a / 2)
 
    # Finding lower Y coordinate by
    # subtracting half of breadth from Y
    y1 = int(y - (k * b - k * b / 2))
 
    # Finding upper Y coordinate
    # by adding half of breadth to Y
    y2 = int(y + k * b / 2)
 
    # If lower X coordinate
    # goes below 0 then we shift
    # the lower coordinate to 0
    # and the upper coordinate
    # accordingly to bring lower
    # coordinate in range
    # and to keep center as
    # close as possible to X, Y
    if (int(x1) < 0):
        x2 -= x1
        x1 = 0
 
    # If upper X coordinate goes
    # beyond n, then we shift the
    # upper X coordinate ton
    # and we shift the lower coordinate
    # accordingly to bring the upper
    # coordinate in range
    if (int(x2) > n):
        x1 -= x2 - n
        x2 = n
 
    # If lower Y coordinate goes
    # below 0 then we shift the
    # lower coordinate to 0
    # and the upper coordinate
    # accordingly to bring lower
    # coordinate in range
    # and to keep center as
    # close as possible to X, Y
    if (int(y1) < 0):
        y2 -= y1
        y1 = 0
 
    # If upper Y coordinate goes
    # beyond n, then we shift the
    # upper X coordinate
    # to n and we shift the lower
    # coordinate accordingly to
    # bring the upper
    # coordinate in range
    if (int(y2) > m):
        y1 -= y2 - m
        y2 = m
 
    print(x1, " ", y1, " ", x2, " ", y2, sep="")
 
 
# Driver function
n = 70
m = 10
x = 20
y = 5
a = 5
b = 3
solve(n, m, x, y, a, b)
 
# This code is contributed by Smitha


C#




using System;
 
class GFG {
 
    // Function to calculate
    // GCD of a and b
    public static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
        else
            return gcd(b % a, a);
    }
 
    // Function to calculate the
    // coordinates of the rectangle
    public static void solve(int n, int m, int x, int y,
                             int a, int b)
    {
 
        int k, g;
        int x1, y1, x2, y2;
        g = gcd(a, b);
 
        // Reducing the ratio to
        // lowest irreducible form
        a /= g;
        b /= g;
 
        // Finding the maximum multiple
        // of length that can be chosen
        k = Math.Min(n / a, m / b);
 
        // Assuming the point (X, Y) as the
        // centre of the required rectangle
        // Finding the lower X coordinate by
        // subtracting half of total length
        // from X
        x1 = x - (k * a - k * a / 2);
 
        // Finding the upper X coordinate
        // by adding half of total length
        // to X
        x2 = x + k * a / 2;
 
        // Finding lower Y coordinate by
        // subtracting half of breadth
        // from Y
        y1 = y - (k * b - k * b / 2);
 
        // Finding upper Y coordinate
        // by adding half of breadth
        // to Y
        y2 = y + k * b / 2;
 
        // If lower X coordinate
        // goes below 0 then we shift
        // the lower coordinate to 0
        // and the upper coordinate
        // accordingly to bring lower
        // coordinate in range
        // and to keep center as
        // close as possible to X, Y
        if (x1 < 0) {
            x2 -= x1;
            x1 = 0;
        }
 
        // If upper X coordinate goes
        // beyond n, then we shift the
        // upper X coordinate ton
        // and we shift the lower coordinate
        // accordingly to bring the upper
        // coordinate in range
        if (x2 > n) {
            x1 -= x2 - n;
            x2 = n;
        }
 
        // If lower Y coordinate goes
        // below 0 then we shift the
        // lower coordinate to 0
        // and the upper coordinate
        // accordingly to bring lower
        // coordinate in range
        // and to keep center as
        // close as possible to X, Y
        if (y1 < 0) {
            y2 -= y1;
            y1 = 0;
        }
 
        // If upper Y coordinate goes
        // beyond n, then we shift the
        // upper X coordinate
        // to n and we shift the lower
        // coordinate accordingly to
        // bring the upper
        // coordinate in range
        if (y2 > m) {
            y1 -= y2 - m;
            y2 = m;
        }
 
        Console.Write(x1 + " " + y1 + " " + x2 + " " + y2);
    }
 
    // Driver Code
    public static void Main()
    {
        int n = 70, m = 10;
        int x = 20, y = 5;
        int a = 5, b = 3;
        solve(n, m, x, y, a, b);
    }
}
 
// This code is contributed by Smitha


PHP




<?php
// Function to calculate
// GCD of a and b
 
function gcd($a, $b)
{
    if ($a == 0)
        return $b;
    else
        return gcd($b % $a, $a);
}
 
// Function to calculate the
// coordinates of the rectangle
function solve($n, $m, $x, $y, $a, $b)
{
 
    $k; $g;
    $x1; $y1; $x2; $y2;
    $g = gcd($a, $b);
 
    // Reducing the ratio to
    // lowest irreducible form
    $a /= $g;
    $b /= $g;
 
    // Finding the maximum multiple
    // of length that can be chosen
    $k = min($n / $a, $m / $b);
 
    // Assuming the point (X, Y)
    // as the centre of the required
    // rectangle Finding the lower
    // X coordinate by subtracting
    // half of total length from X
    $x1 = $x - ($k * $a - $k * $a / 2);
 
    // Finding the upper X
    // coordinate by adding
    // half of total length to X
    $x2 = $x + $k * $a / 2;
 
    // Finding lower Y coordinate by
    // subtracting half of breadth from Y
    $y1 = $y - ($k * $b - $k * $b / 2);
 
    // Finding upper Y coordinate
    // by adding half of breadth to Y
    $y2 = $y + $k * $b / 2;
 
    // If lower X coordinate
    // goes below 0 then we shift
    // the lower coordinate to 0
    // and the upper coordinate
    // accordingly to bring lower
    // coordinate in range
    // and to keep center as
    // close as possible to X, Y
    if ($x1 < 0)
    {
        $x2 -= $x1;
        $x1 = 0;
    }
 
    // If upper X coordinate goes
    // beyond n, then we shift the
    // upper X coordinate ton
    // and we shift the lower coordinate
    // accordingly to bring the upper
    // coordinate in range
    if ($x2 > $n)
    {
        $x1 -= $x2 - $n;
        $x2 = $n;
    }
 
    // If lower Y coordinate goes
    // below 0 then we shift the
    // lower coordinate to 0
    // and the upper coordinate
    // accordingly to bring lower
    // coordinate in range
    // and to keep center as
    // close as possible to X, Y
    if ($y1 < 0)
    {
        $y2 -= $y1;
        $y1 = 0;
    }
 
    // If upper Y coordinate goes
    // beyond n, then we shift the
    // upper X coordinate
    // to n and we shift the lower
    // coordinate accordingly to
    // bring the upper
    // coordinate in range
    if ($y2 > $m)
    {
        $y1 -= $y2 - $m;
        $y2 = $m;
    }
 
    echo $x1, " ", $y1, " ",
         $x2, " ", $y2, "\n";
}
 
// Driver Code
$n = 70; $m = 10; $x = 20;
$y = 5; $a = 5; $b = 3;
solve($n, $m, $x, $y, $a, $b);
 
// This code is contributed by aj_36
?>


Javascript




<script>
    // Function to calculate
    // GCD of a and b
    function gcd(a, b)
    {
        if (a == 0)
            return b;
        else
            return gcd(b % a, a);
    }
   
    // Function to calculate the
    // coordinates of the rectangle
    function solve(n, m, x, y, a, b)
    {
   
        let k, g;
        let x1, y1, x2, y2;
        g = gcd(a, b);
   
        // Reducing the ratio to
        // lowest irreducible form
        a = a / g;
        b = b / g;
   
        // Finding the maximum multiple
        // of length that can be chosen
        k = Math.min(parseInt(n / a, 10), parseInt(m / b, 10));
   
        // Assuming the point (X, Y) as the
        // centre of the required rectangle
        // Finding the lower X coordinate by
        // subtracting half of total length
        // from X
        x1 = x - (k * a - k * parseInt(a / 2, 10));
   
        // Finding the upper X coordinate
        // by adding half of total length
        // to X
        x2 = x + k * parseInt(a / 2, 10);
   
        // Finding lower Y coordinate by
        // subtracting half of breadth
        // from Y
        y1 = y - (k * b - k * parseInt(b / 2, 10));
   
        // Finding upper Y coordinate
        // by adding half of breadth
        // to Y
        y2 = y + k * parseInt(b / 2, 10);
   
        // If lower X coordinate
        // goes below 0 then we shift
        // the lower coordinate to 0
        // and the upper coordinate
        // accordingly to bring lower
        // coordinate in range
        // and to keep center as
        // close as possible to X, Y
        if (x1 < 0) {
            x2 -= x1;
            x1 = 0;
        }
   
        // If upper X coordinate goes
        // beyond n, then we shift the
        // upper X coordinate ton
        // and we shift the lower coordinate
        // accordingly to bring the upper
        // coordinate in range
        if (x2 > n) {
            x1 -= x2 - n;
            x2 = n;
        }
         
        x1 += 1; x2 += 1;
   
        // If lower Y coordinate goes
        // below 0 then we shift the
        // lower coordinate to 0
        // and the upper coordinate
        // accordingly to bring lower
        // coordinate in range
        // and to keep center as
        // close as possible to X, Y
        if (y1 < 0) {
            y2 -= y1;
            y1 = 0;
        }
   
        // If upper Y coordinate goes
        // beyond n, then we shift the
        // upper X coordinate
        // to n and we shift the lower
        // coordinate accordingly to
        // bring the upper
        // coordinate in range
        if (y2 > m) {
            y1 -= y2 - m;
            y2 = m;
        }
   
        document.write(x1 + " " + y1 + " " + x2 + " " + y2);
    }
     
    let n = 70, m = 10;
    let x = 20, y = 5;
    let a = 5, b = 3;
    solve(n, m, x, y, a, b);
     
</script>


Output

12 0 27 9

Time complexity: O(log(min(a,b)))
Auxiliary space: O(log(min(a,b))

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments