Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind two numbers A and B of X and Y digits respectively...

Find two numbers A and B of X and Y digits respectively with GCD having Z digits

Given three positive integers X, Y, and Z. The task is to find two numbers A and B of X and Y digits respectively with their GCD having Z digits. where Z ≤ min(X, Y). If there are multiple possible answers print any of them.

Examples:

Input: X = 2, Y = 3, Z = 1
Output: A = 11, B = 100 
Explanation: A and B contains 2 and 3 digits respectively and GCD(A, B) is 1 which has 1 digit.

Input: X = 2, Y = 2, Z = 2
Output: A = 13, B = 26

 

Approach: The task can be solved using some observations. Calculate A equals 10x-1, B as 10y-1, and C as 10z-1. Increment A with C to achieve GCD with Z digits. Follow the below steps to solve the problem:

  • Initialize 3 variables A, B, C with 1.
  • Append Z -1 zeroes with C.
  • Append X – 1 zeroes in last of A.
  • Append Y – 1 zero in last of B.
  • Increment A by the value of C.
  • Print A and B as the answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the desired numbers
void findTwoNumbers(int X, int Y, int Z)
{
 
    int A, B, C;
    A = B = C = 1;
 
    for (int i = 1; i <= X - 1; i++) {
        A = A * 10;
    }
    for (int i = 1; i <= Y - 1; i++) {
        B = B * 10;
    }
    for (int i = 1; i <= Z - 1; i++) {
        C = C * 10;
    }
 
    A = A + C;
 
    cout << "A = " << A << " B = " << B;
}
 
// Driver Code
int main()
{
    int X = 2, Y = 3, Z = 1;
    findTwoNumbers(X, Y, Z);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
public class GFG {
 
  // Function to find the desired numbers
  static void findTwoNumbers(int X, int Y, int Z) {
 
    int A, B, C;
    A = B = C = 1;
 
    for (int i = 1; i <= X - 1; i++) {
      A = A * 10;
    }
    for (int i = 1; i <= Y - 1; i++) {
      B = B * 10;
    }
    for (int i = 1; i <= Z - 1; i++) {
      C = C * 10;
    }
 
    A = A + C;
 
    System.out.println("A = " + A + " B = " + B);
  }
 
  // Driver Code
  public static void main(String args[]) {
    int X = 2, Y = 3, Z = 1;
    findTwoNumbers(X, Y, Z);
  }
}
 
// This code is contributed by Saurabh Jaiswal


Python3




# python3 program for the above approach
 
# Function to find the desired numbers
def findTwoNumbers(X, Y, Z):
    A = B = C = 1
 
    for i in range(1, X):
        A = A * 10
 
    for i in range(1, Y):
        B = B * 10
 
    for i in range(1, Z):
        C = C * 10
 
    A = A + C
 
    print(f"A = {A} B = {B}")
 
# Driver Code
if __name__ == "__main__":
 
    X, Y, Z = 2, 3, 1
    findTwoNumbers(X, Y, Z)
 
    # This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
public class GFG
{
   
// Function to find the desired numbers
static void findTwoNumbers(int X, int Y, int Z)
{
 
    int A, B, C;
    A = B = C = 1;
 
    for (int i = 1; i <= X - 1; i++) {
        A = A * 10;
    }
    for (int i = 1; i <= Y - 1; i++) {
        B = B * 10;
    }
    for (int i = 1; i <= Z - 1; i++) {
        C = C * 10;
    }
 
    A = A + C;
 
    Console.Write("A = " + A + " B = " + B);
}
 
// Driver Code
public static void Main()
{
    int X = 2, Y = 3, Z = 1;
    findTwoNumbers(X, Y, Z);
}
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
    // JavaScript code for the above approach
 
 
    // Function to find the desired numbers
    function findTwoNumbers(X, Y, Z) {
 
        let A, B, C;
        A = B = C = 1;
 
        for (let i = 1; i <= X - 1; i++) {
            A = A * 10;
        }
        for (let i = 1; i <= Y - 1; i++) {
            B = B * 10;
        }
        for (let i = 1; i <= Z - 1; i++) {
            C = C * 10;
        }
 
        A = A + C;
 
        document.write("A = " + A + " B = " + B);
    }
 
    // Driver Code
 
    let X = 2, Y = 3, Z = 1;
    findTwoNumbers(X, Y, Z);
 
   // This code is contributed by Potta Lokesh
</script>


Output

A = 11 B = 100

Time Complexity: O(max(X, Y))
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
12 Dec, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments