Sunday, January 19, 2025
Google search engine
HomeData Modelling & AIFind two integers X and Y with given GCD P and given...

Find two integers X and Y with given GCD P and given difference between their squares Q

Given two integers P and Q, the task is to find any two integers whose Greatest Common Divisor(GCD) is P and the difference between their squares is Q. If there doesn’t exist any such integers, then print “-1”.

Examples: 

Input: P = 3, Q = 27
Output:  6 3
Explanation:
Consider the two number as 6, 3. Now, the GCD(6, 3) = 3 and 6*6 – 3*3 = 27 which satisfies the condition.

Input: P = 1, Q = 100
Output: -1

 

Approach: The given problem can be solved using based on the following observations:

The given equation can also be written as:  

 

=> x^{2} - y^{2} = Q
=> (x + y)*(x - y) = Q             

 

Now for an integral solution of the given equation:  

 

(x+y)(x-y)  is always an integer 
=> (x+y)(x-y)  are divisors of Q 
  

 

Let  (x + y) = p1 and (x + y) = p2 
be the two equations where p1 & p2 are the divisors of Q 
such that p1 * p2 = Q.

 

Solving for the above two equation we have:  

 

=> x = \frac{(p1 + p2)}{2}            and   y = \frac{(p1 - p2)}{2}

 

From the above calculations, for x and y to be integral, then the sum of divisors must be even. Since there are 4 possible values for two values of x and y as (+x, +y), (+x, -y), (-x, +y) and (-x, -y)
Therefore the total number of possible solution is given by 4*(count pairs of divisors with even sum).

 

Now among these pairs, find the pair with GCD as P and print the pair. If no such pair exists, print -1.

 

Below is the implementation of the above approach:

 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to print a valid pair with
// the given criteria
int printValidPair(int P, int Q)
{
 
    // Iterate over the divisors of Q
    for (int i = 1; i * i <= Q; i++) {
 
        // check if Q is a multiple of i
        if (Q % i == 0) {
 
            // L = (A - B) <- 1st equation
            // R = (A + B) <- 2nd equation
            int L = i;
            int R = Q / i;
 
            // Calculate value of A
            int A = (L + R) / 2;
 
            // Calculate value of B
            int B = (R - L) / 2;
 
            // As A and B both are integers
            // so the parity of L and R
            // should be the same
            if (L % 2 != R % 2) {
                continue;
            }
 
            // Check the first condition
            if (__gcd(A, B) == P) {
                cout << A << " " << B;
                return 0;
            }
        }
    }
 
    // If no such A, B exist
    cout << -1;
 
    return 0;
}
 
// Driver Code
int main()
{
    int P = 3, Q = 27;
    printValidPair(P, Q);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to print a valid pair with
// the given criteria
static int printValidPair(int P, int Q)
{
 
    // Iterate over the divisors of Q
    for (int i = 1; i * i <= Q; i++) {
 
        // check if Q is a multiple of i
        if (Q % i == 0) {
 
            // L = (A - B) <- 1st equation
            // R = (A + B) <- 2nd equation
            int L = i;
            int R = Q / i;
 
            // Calculate value of A
            int A = (L + R) / 2;
 
            // Calculate value of B
            int B = (R - L) / 2;
 
            // As A and B both are integers
            // so the parity of L and R
            // should be the same
            if (L % 2 != R % 2) {
                continue;
            }
 
            // Check the first condition
            if (__gcd(A, B) == P) {
                System.out.print(A+ " " +  B);
                return 0;
            }
        }
    }
 
    // If no such A, B exist
    System.out.print(-1);
    return 0;
 
}
static int __gcd(int a, int b) 
    return b == 0? a:__gcd(b, a % b);    
}
   
// Driver Code
public static void main(String[] args)
{
    int P = 3, Q = 27;
    printValidPair(P, Q);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# python program for the above approach
import math
 
# Function to print a valid pair with
# the given criteria
def printValidPair(P, Q):
 
    # Iterate over the divisors of Q
    for i in range(1, int(math.sqrt(Q)) + 1):
 
        # check if Q is a multiple of i
        if (Q % i == 0):
 
            # L = (A - B) <- 1st equation
            # R = (A + B) <- 2nd equation
            L = i
            R = Q // i
 
            # Calculate value of A
            A = (L + R) // 2
 
            # Calculate value of B
            B = (R - L) // 2
 
            # As A and B both are integers
            # so the parity of L and R
            # should be the same
            if (L % 2 != R % 2):
                continue
 
            # Check the first condition
            if (math.gcd(A, B) == P):
                print(f"{A} {B}")
                return 0
 
    # If no such A, B exist
    print(-1)
 
    return 0
 
# Driver Code
if __name__ == "__main__":
 
    P = 3
    Q = 27
    printValidPair(P, Q)
 
    # This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
class GFG
{
 
    // Function to print a valid pair with
    // the given criteria
    static int printValidPair(int P, int Q)
    {
 
        // Iterate over the divisors of Q
        for (int i = 1; i * i <= Q; i++)
        {
 
            // check if Q is a multiple of i
            if (Q % i == 0)
            {
 
                // L = (A - B) <- 1st equation
                // R = (A + B) <- 2nd equation
                int L = i;
                int R = Q / i;
 
                // Calculate value of A
                int A = (L + R) / 2;
 
                // Calculate value of B
                int B = (R - L) / 2;
 
                // As A and B both are integers
                // so the parity of L and R
                // should be the same
                if (L % 2 != R % 2)
                {
                    continue;
                }
 
                // Check the first condition
                if (__gcd(A, B) == P)
                {
                    Console.Write(A + " " + B);
                    return 0;
                }
            }
        }
 
        // If no such A, B exist
        Console.Write(-1);
        return 0;
 
    }
    static int __gcd(int a, int b)
    {
        return b == 0 ? a : __gcd(b, a % b);
    }
 
    // Driver Code
    public static void Main()
    {
        int P = 3, Q = 27;
        printValidPair(P, Q);
    }
}
 
// This code is contributed by gfgking


Javascript




<script>
       // JavaScript code for the above approach
       // Recursive function to return gcd of a and b
       function __gcd(a, b) {
           // Everything divides 0
           if (a == 0)
               return b;
           if (b == 0)
               return a;
 
           // base case
           if (a == b)
               return a;
 
           // a is greater
           if (a > b)
               return __gcd(a - b, b);
           return __gcd(a, b - a);
       }
 
       // Function to print a valid pair with
       // the given criteria
       function printValidPair(P, Q) {
 
           // Iterate over the divisors of Q
           for (let i = 1; i * i <= Q; i++) {
 
               // check if Q is a multiple of i
               if (Q % i == 0) {
 
                   // L = (A - B) <- 1st equation
                   // R = (A + B) <- 2nd equation
                   let L = i;
                   let R = Q / i;
 
                   // Calculate value of A
                   let A = (L + R) / 2;
 
                   // Calculate value of B
                   let B = (R - L) / 2;
 
                   // As A and B both are integers
                   // so the parity of L and R
                   // should be the same
                   if (L % 2 != R % 2) {
                       continue;
                   }
 
                   // Check the first condition
                   if (__gcd(A, B) == P) {
                       document.write(A + " " + B);
                       return 0;
                   }
               }
           }
 
           // If no such A, B exist
           document.write(-1);
 
           return 0;
       }
 
       // Driver Code
       let P = 3, Q = 27;
       printValidPair(P, Q);
 
 // This code is contributed by Potta Lokesh
   </script>


 
 

Output: 

6 3

 

 

Time Complexity: O(sqrt(Q))
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments