Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFind the top K items with the highest value

Find the top K items with the highest value

Given a list of items and their values. The task is to find top k items with the highest value. It is possible that two items have the same value, in that case item whose name comes first (lexicographically) will be given higher priority. Examples:

Input: items[] = {Bat, Gloves, Wickets, Ball}, values[] = {100, 50, 200, 100} k = 2 Output: Wickets Ball Wickets has the highest value. Bat, Ball has the same value but Ball comes first lexicographically.

Approach: This question can be solved by picking the items greedily according to the values. We will sort use the items list in the decreasing order of the values and in case of the same values items will be sorted lexicographical order increasing order. We will store the data in the form of pairs in a vector and will use an inbuilt sort function with boolean comparator function which will be used to compare two items. Below is the implementation of the above approach: 

CPP




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Boolean Comparator Function
// to compare two pairs of item-value
bool comp(pair<string, int> A, pair<string, int> B)
{
    // Compare the name if the values are equal
    if (A.second == B.second)
        return A.first < B.first;
 
    // Else compare values
    return A.second > B.second;
}
 
// Driver code
int main()
{
    int k = 2;
    int n = 3;
 
    // Store data in a vector of Item-Value Pair
    vector<pair<string, int> > items;
 
    // inserting items-value pairs in the vector
    items.push_back(make_pair("Bat", 100));
    items.push_back(make_pair("Gloves", 50));
    items.push_back(make_pair("Wickets", 200));
    items.push_back(make_pair("Ball", 100));
 
    // Sort items using Inbuilt function
    sort(items.begin(), items.end(), comp);
 
    // Print top k values
    // or if n is less than k
    // Print all n items
    for (int i = 0; i < min(n, k); ++i) {
        cout << items[i].first << '\n';
    }
 
    return 0;
}


Java




import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
 
public class Main {
 
  // Boolean Comparator Function
  // to compare two pairs of item-value
  static class ItemComparator implements Comparator<Pair<String, Integer>> {
    @Override
    public int compare(Pair<String, Integer> A, Pair<String, Integer> B) {
      // Compare the name if the values are equal
      if (A.getValue().equals(B.getValue())) {
        return A.getKey().compareTo(B.getKey());
      }
      // Else compare values
      return B.getValue() - A.getValue();
    }
  }
 
  // Driver code
  public static void main(String[] args) {
    int k = 2;
    int n = 3;
 
    // Store data in a list of Item-Value Pair
    List<Pair<String, Integer>> items = new ArrayList<>();
 
    // inserting items-value pairs in the list
    items.add(new Pair<>("Bat", 100));
    items.add(new Pair<>("Gloves", 50));
    items.add(new Pair<>("Wickets", 200));
    items.add(new Pair<>("Ball", 100));
 
    // Sort items using Inbuilt function
    Collections.sort(items, new ItemComparator());
 
    // Print top k values
    // or if n is less than k
    // Print all n items
    for (int i = 0; i < Math.min(n, k); i++) {
      System.out.println(items.get(i).getKey());
    }
  }
 
  // Pair class to represent item-value pairs
  static class Pair<K, V> {
    private final K key;
    private final V value;
 
    public Pair(K key, V value) {
      this.key = key;
      this.value = value;
    }
 
    public K getKey() {
      return key;
    }
 
    public V getValue() {
      return value;
    }
  }
}


Python3




# Python3 implementation of above approach
 
# Boolean Comparator Function
# to compare two pairs of item-value
def comp(A, B):
 
    # Compare the name if the values are equal
    if (A[1] == B[1]):
        return A[0] < B[0]
     
    # Else compare values
    return A[1] > B[1]
 
# Driver code
k = 2
n = 3
 
# Store data in a list of Item-Value Pair
items = []
 
# inserting items-value pairs in the list
items.append(("Bat", 100))
items.append(("Gloves", 50))
items.append(("Wickets", 200))
items.append(("Ball", 100))
 
# Sort items using Inbuilt function
items.sort(key=lambda x: (-x[1], x[0]))
 
# Print top k values
# or if n is less than k
# Print all n items
for i in range(min(n, k)):
    print(items[i][0])
 
# This code is contributed by phasing17


Javascript




// JavaScript implementation of above approach
 
// Boolean Comparator Function
// to compare two pairs of item-value
function comp(A, B) {
 
  // Compare the name if the values are equal
  if (A[1] == B[1]) {
    return A[0] < B[0];
  }
 
  // Else compare values
  return A[1] > B[1];
}
 
// Driver code
let k = 2;
let n = 3;
 
// Store data in a list of Item-Value Pair
let items = [];
 
// inserting items-value pairs in the list
items.push(["Bat", 100]);
items.push(["Gloves", 50]);
items.push(["Wickets", 200]);
items.push(["Ball", 100]);
 
// Sort items using Inbuilt function
items.sort(function(a, b) {
  return comp(a, b) ? -1 : 1;
});
 
// Print top k values
// or if n is less than k
// Print all n items
for (let i = 0; i < Math.min(n, k); i++) {
  console.log(items[i][0]);
}


C#




using System;
using System.Collections.Generic;
 
public class MainClass
{
    // Boolean Comparator Function
    // to compare two pairs of item-value
    static int ItemComparator(Pair<string, int> A, Pair<string, int> B)
    {
        // Compare the name if the values are equal
        if (A.Value.Equals(B.Value))
        {
            return A.Key.CompareTo(B.Key);
        }
        // Else compare values
        return B.Value - A.Value;
    }
 
    // Driver code
    public static void Main()
    {
        int k = 2;
        int n = 3;
 
        // Store data in a list of Item-Value Pair
        List<Pair<string, int>> items = new List<Pair<string, int>>();
 
        // inserting items-value pairs in the list
        items.Add(new Pair<string, int>("Bat", 100));
        items.Add(new Pair<string, int>("Gloves", 50));
        items.Add(new Pair<string, int>("Wickets", 200));
        items.Add(new Pair<string, int>("Ball", 100));
 
        // Sort items using Inbuilt function
        items.Sort(ItemComparator);
 
        // Print top k values
        // or if n is less than k
        // Print all n items
        for (int i = 0; i < Math.Min(n, k); i++)
        {
            Console.WriteLine(items[i].Key);
        }
    }
 
    // Pair class to represent item-value pairs
    public class Pair<K, V>
    {
        public K Key { get; }
        public V Value { get; }
 
        public Pair(K key, V value)
        {
            Key = key;
            Value = value;
        }
    }
}


Output:

Wickets
Ball

Time Complexity: O(NlogN) Further Optimization : We can further optimize above solutions using Heap Data Structure. Please see k largest elements in an array.

Space Complexity: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments