Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIFind the sum of first N terms of the series 2×3 +...

Find the sum of first N terms of the series 2×3 + 4×4 + 6×5 + 8×6 + …

Given an integer N. The task is to find the sum upto N terms of the given series:
 

2×3 + 4×4 + 6×5 + 8×6 + … + upto n terms 
 

Examples: 
 

Input : N = 5
Output : Sum = 170

Input : N = 10
Output : Sum = 990

 

Let the N-th term of the series be tN
t1 = 2 × 3 = (2 × 1)(1 + 2) 
t2 = 4 × 4 = (2 × 2)(2 + 2) 
t3 = 6 × 5 = (2 × 3)(3 + 2) 
t4 = 8 × 6 = (2 × 4)(4 + 2) 



tN = (2 × N)(N + 2)
The sum of n terms of the series, 
 

 Sn = t1 + t2 +... + tn
    =\;\sum_{k=1}^{n} t_{k}=\;\sum_{k=1}^{n} 2k(k+2)=\;\sum_{k=1}^{n} (2k^{2}+4k)=\;\sum_{k=1}^{n}  2k^{2} + \;\sum_{k=1}^{n}  4k=2\frac{n(n+1)(2n+1)}{6} + 4\frac{n(n+1)}{2}=n(n+1)[ \frac{2n+1}{3} +2]=\frac{n(n+1)(2n+7)}{3}

Below is the implementation of above approach: 
 

C++




// C++ program to find sum upto
// N term of the series:
// 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ...
#include<iostream>
using namespace std;
 
// calculate sum upto N term of series
void Sum_upto_nth_Term(int n)
{
    int r = n * (n + 1) *
                (2 * n + 7) / 3;
    cout << r;
}
 
// Driver code
int main()
{
    int N = 5;
    Sum_upto_nth_Term(N) ;
    return 0;
}


Java




// Java program to find sum upto
// N term of the series:
 
import java.io.*;
 
class GFG {
// calculate sum upto N term of series
static void Sum_upto_nth_Term(int n)
{
    int r = n * (n + 1) *
                (2 * n + 7) / 3;
    System.out.println(r);
}
 
// Driver code
    public static void main (String[] args) {
    int N = 5;
    Sum_upto_nth_Term(N);
    }
}


Python3




# Python program to find sum upto N term of the series:
# 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ...
 
# calculate sum upto N term of series
def Sum_upto_nth_Term(n):
    return n * (n + 1) * (2 * n + 7) // 3
 
# Driver code
N = 5
print(Sum_upto_nth_Term(N))


C#




// C# program to find sum upto
// N term of the series:
// 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ...
 
using System;
 
class GFG
{
// calculate sum upto N term of series
static void Sum_upto_nth_Term(int n)
{
    int r = n * (n + 1) *
                (2 * n + 7) / 3;
    Console.Write(r);
}
 
// Driver code
public static void Main()
{
    int N = 5;
    Sum_upto_nth_Term(N);
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


PHP




<?php
// PHP program to find sum upto
// N term of the series:
// 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ...
function Sum_upto_nth_Term($n)
{
    $r = $n * ($n + 1) *
              (2 * $n + 7) / 3;
    echo $r;
}
 
// Driver code
$N = 5;
Sum_upto_nth_Term($N);
 
// This code is contributed
// by Shashank_Sharma
?>


Javascript




<script>
 
// Javascript program to find sum upto
// N term of the series:
// 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ...
 
// calculate sum upto N term of series
function Sum_upto_nth_Term(n)
{
    let r = n * (n + 1) *
                (2 * n + 7) / 3;
    document.write(r);
}
 
// Driver code
 
    let N = 5;
    Sum_upto_nth_Term(N) ;
 
 
// This code is contributed by Mayank Tyagi
 
</script>


Output: 

170

 

Time Complexity: O(1), it is a constant.
Auxiliary Space: O(1), no extra space is required.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments