Given an integer N. The task is to find the sum upto N terms of the given series:
2×3 + 4×4 + 6×5 + 8×6 + … + upto n terms
Examples:
Input : N = 5 Output : Sum = 170 Input : N = 10 Output : Sum = 990
Let the N-th term of the series be tN.
t1 = 2 × 3 = (2 × 1)(1 + 2)
t2 = 4 × 4 = (2 × 2)(2 + 2)
t3 = 6 × 5 = (2 × 3)(3 + 2)
t4 = 8 × 6 = (2 × 4)(4 + 2)
.
.
.
tN = (2 × N)(N + 2)
The sum of n terms of the series,
Sn = t1 + t2 +... + tn =======
Below is the implementation of above approach:
C++
// C++ program to find sum upto // N term of the series: // 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ... #include<iostream> using namespace std; // calculate sum upto N term of series void Sum_upto_nth_Term( int n) { int r = n * (n + 1) * (2 * n + 7) / 3; cout << r; } // Driver code int main() { int N = 5; Sum_upto_nth_Term(N) ; return 0; } |
Java
// Java program to find sum upto // N term of the series: import java.io.*; class GFG { // calculate sum upto N term of series static void Sum_upto_nth_Term( int n) { int r = n * (n + 1 ) * ( 2 * n + 7 ) / 3 ; System.out.println(r); } // Driver code public static void main (String[] args) { int N = 5 ; Sum_upto_nth_Term(N); } } |
Python3
# Python program to find sum upto N term of the series: # 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ... # calculate sum upto N term of series def Sum_upto_nth_Term(n): return n * (n + 1 ) * ( 2 * n + 7 ) / / 3 # Driver code N = 5 print (Sum_upto_nth_Term(N)) |
C#
// C# program to find sum upto // N term of the series: // 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ... using System; class GFG { // calculate sum upto N term of series static void Sum_upto_nth_Term( int n) { int r = n * (n + 1) * (2 * n + 7) / 3; Console.Write(r); } // Driver code public static void Main() { int N = 5; Sum_upto_nth_Term(N); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
PHP
<?php // PHP program to find sum upto // N term of the series: // 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ... function Sum_upto_nth_Term( $n ) { $r = $n * ( $n + 1) * (2 * $n + 7) / 3; echo $r ; } // Driver code $N = 5; Sum_upto_nth_Term( $N ); // This code is contributed // by Shashank_Sharma ?> |
Javascript
<script> // Javascript program to find sum upto // N term of the series: // 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ... // calculate sum upto N term of series function Sum_upto_nth_Term(n) { let r = n * (n + 1) * (2 * n + 7) / 3; document.write(r); } // Driver code let N = 5; Sum_upto_nth_Term(N) ; // This code is contributed by Mayank Tyagi </script> |
170
Time Complexity: O(1), it is a constant.
Auxiliary Space: O(1), no extra space is required.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!