Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind the sum of all left leaf nodes which also has its...

Find the sum of all left leaf nodes which also has its right sibling

Given a Binary Tree rooted at root, the task is to find the sum of all leaf nodes which are left child of their parents and which also have their right sibling i.e, it’s a parent has also a right child.

Examples:

Input:          16
                 /      \
            20         15
           /         /     \
     100      21       25
     /        /  \        /  \
27       14    9    7    6
          /  \     \
     17   12    2
Output: 24.
Explanation: The leaf nodes having values 7 and 17 only have a right sibling.

Input:              12
                      /    \
                  13     10
                          /  \
                      14    15
                             /  \
                          22   23 

Output: 49

 

Approach: The idea is to use recursion to solve this problem. Start traversing from the root node. For every node check if it is NULL if true then return 0. If both children are NULL return 0. If both children are not NULL:

  • If left is a leaf node then return root->left->data + value getting on traversing the right child.
  • Else return value getting on traversing the left child + value getting on traversing the right child

Following the steps below to solve the problem:

  • If root equals null or a leaf-node, then return 0.
  • If root has both the children, then perform the following tasks:
    • If the left child of root is a leaf node then return root->left->data + sumOfLeft(root->right).
    • Else, return the summation of sumofLeft(root->left) and sumofLeft(root->right).
  • Else if, there is root->left, then return sumofLeft(root->left).
  • Else return sumofLeft(root->right).

Below is the implementation of the above approach

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Node of the binary tree.
class Node {
public:
    int data;
    Node *left, *right;
    Node(int data)
    {
        this->data = data;
        this->left = NULL;
        this->right = NULL;
    }
};
 
// Function to return the sum of
// left leaf node having right sibling.
int sumOfLeft(Node* root)
{
 
    // If root node is NULL
    if (root == NULL)
        return 0;
 
    // If root node is a leaf node
    // Note: It is not for left leaf
    // node having right sibling
    if (root->left == NULL
        && root->right == NULL)
        return 0;
 
    // If node has both the child
    if (root->left != NULL
        && root->right != NULL) {
 
        // If its left node is leaf node
        if (root->left->left == NULL
            && root->left->right == NULL) {
 
            // Returning the sum of
            // left node data
            // and the value obtained by
            // traversing right child
            return root->left->data
                   + sumOfLeft(root->right);
        }
        else {
 
            // Returning sum of values
            // obtained by traversing
            // both the child
            return sumOfLeft(root->left)
                   + sumOfLeft(root->right);
        }
    }
 
    // If there is only left child
    else if (root->left != NULL) {
        return sumOfLeft(root->left);
    }
 
    // If only right child is left
    return sumOfLeft(root->right);
}
 
// Driver Code
int main()
{
    // Binary tree construction
    Node* root = new Node(12);
    root->left = new Node(13);
    root->right = new Node(10);
    root->right->left = new Node(14);
    root->right->right = new Node(15);
    root->right->right->left
        = new Node(22);
    root->right->right->right
        = new Node(23);
    cout << sumOfLeft(root);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Node of the binary tree.
static class Node {
    int data;
    Node left, right;
    Node(int data)
    {
        this.data = data;
        this.left = null;
        this.right = null;
    }
};
 
// Function to return the sum of
// left leaf node having right sibling.
static int sumOfLeft(Node root)
{
 
    // If root node is null
    if (root == null)
        return 0;
 
    // If root node is a leaf node
    // Note: It is not for left leaf
    // node having right sibling
    if (root.left == null
        && root.right == null)
        return 0;
 
    // If node has both the child
    if (root.left != null
        && root.right != null) {
 
        // If its left node is leaf node
        if (root.left.left == null
            && root.left.right == null) {
 
            // Returning the sum of
            // left node data
            // and the value obtained by
            // traversing right child
            return root.left.data
                   + sumOfLeft(root.right);
        }
        else {
 
            // Returning sum of values
            // obtained by traversing
            // both the child
            return sumOfLeft(root.left)
                   + sumOfLeft(root.right);
        }
    }
 
    // If there is only left child
    else if (root.left != null) {
        return sumOfLeft(root.left);
    }
 
    // If only right child is left
    return sumOfLeft(root.right);
}
 
// Driver Code
public static void main(String[] args)
{
    // Binary tree construction
    Node root = new Node(12);
    root.left = new Node(13);
    root.right = new Node(10);
    root.right.left = new Node(14);
    root.right.right = new Node(15);
    root.right.right.left
        = new Node(22);
    root.right.right.right
        = new Node(23);
    System.out.print(sumOfLeft(root));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python program for the above approach
 
# Node of the binary tree.
class Node:
    def __init__(self, data):
        self.data = data;
        self.left = None;
        self.right = None;
 
# Function to return the sum of
# left leaf Node having right sibling.
def sumOfLeft(root):
 
    # If root Node is None
    if (root == None):
        return 0;
 
    # If root Node is a leaf Node
    # Note: It is not for left leaf
    # Node having right sibling
    if (root.left == None and root.right == None):
        return 0;
 
    # If Node has both the child
    if (root.left != None and root.right != None):
 
        # If its left Node is leaf Node
        if (root.left.left == None and root.left.right == None):
 
            # Returning the sum of
            # left Node data
            # and the value obtained by
            # traversing right child
            return root.left.data + sumOfLeft(root.right);
        else:
 
            # Returning sum of values
            # obtained by traversing
            # both the child
            return sumOfLeft(root.left) + sumOfLeft(root.right);
         
    # If there is only left child
    elif(root.left != None):
        return sumOfLeft(root.left);
     
    # If only right child is left
    return sumOfLeft(root.right);
 
# Driver Code
if __name__ == '__main__':
   
    # Binary tree construction
    root =  Node(12);
    root.left =  Node(13);
    root.right =  Node(10);
    root.right.left =  Node(14);
    root.right.right =  Node(15);
    root.right.right.left =  Node(22);
    root.right.right.right =  Node(23);
    print(sumOfLeft(root));
 
# This code is contributed by Rajput-Ji


C#




// C# program for the above approach
using System;
public class GFG{
 
  // Node of the binary tree.
  class Node {
    public int data;
    public Node left, right;
    public Node(int data)
    {
      this.data = data;
      this.left = null;
      this.right = null;
    }
  };
 
  // Function to return the sum of
  // left leaf node having right sibling.
  static int sumOfLeft(Node root)
  {
 
    // If root node is null
    if (root == null)
      return 0;
 
    // If root node is a leaf node
    // Note: It is not for left leaf
    // node having right sibling
    if (root.left == null
        && root.right == null)
      return 0;
 
    // If node has both the child
    if (root.left != null
        && root.right != null) {
 
      // If its left node is leaf node
      if (root.left.left == null
          && root.left.right == null) {
 
        // Returning the sum of
        // left node data
        // and the value obtained by
        // traversing right child
        return root.left.data
          + sumOfLeft(root.right);
      }
      else {
 
        // Returning sum of values
        // obtained by traversing
        // both the child
        return sumOfLeft(root.left)
          + sumOfLeft(root.right);
      }
    }
 
    // If there is only left child
    else if (root.left != null) {
      return sumOfLeft(root.left);
    }
 
    // If only right child is left
    return sumOfLeft(root.right);
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
 
    // Binary tree construction
    Node root = new Node(12);
    root.left = new Node(13);
    root.right = new Node(10);
    root.right.left = new Node(14);
    root.right.right = new Node(15);
    root.right.right.left
      = new Node(22);
    root.right.right.right
      = new Node(23);
    Console.Write(sumOfLeft(root));
  }
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
       // JavaScript code for the above approach
 
       // Node of the binary tree.
       class Node {
 
           constructor(d) {
               this.data = d;
               this.left = null;
               this.right = null;
           }
       };
 
       // Function to return the sum of
       // left leaf node having right sibling.
       function sumOfLeft(root) {
 
           // If root node is null
           if (root == null)
               return 0;
 
           // If root node is a leaf node
           // Note: It is not for left leaf
           // node having right sibling
           if (root.left == null
               && root.right == null)
               return 0;
 
           // If node has both the child
           if (root.left != null
               && root.right != null) {
 
               // If its left node is leaf node
               if (root.left.left == null
                   && root.left.right == null) {
 
                   // Returning the sum of
                   // left node data
                   // and the value obtained by
                   // traversing right child
                   return root.left.data
                       + sumOfLeft(root.right);
               }
               else {
 
                   // Returning sum of values
                   // obtained by traversing
                   // both the child
                   return sumOfLeft(root.left)
                       + sumOfLeft(root.right);
               }
           }
 
           // If there is only left child
           else if (root.left != null) {
               return sumOfLeft(root.left);
           }
 
           // If only right child is left
           return sumOfLeft(root.right);
       }
 
       // Driver Code
 
       // Binary tree construction
       let root = new Node(12);
       root.left = new Node(13);
       root.right = new Node(10);
       root.right.left = new Node(14);
       root.right.right = new Node(15);
       root.right.right.left
           = new Node(22);
       root.right.right.right
           = new Node(23);
       document.write(sumOfLeft(root));
 
      // This code is contributed by Potta Lokesh
   </script>


 
 

Output

49

 

Time Complexity: O(N) where N is the total number of nodes
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
28 Feb, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments