Monday, January 13, 2025
Google search engine
HomeData Modelling & AIFind the suffix factorials of a suffix sum array of the given...

Find the suffix factorials of a suffix sum array of the given array

Given an array arr[] consisting of N positive integers, the task is to find the suffix factorials of a suffix sum array of the given array.

Examples:

Input: arr[] = {1, 2, 3, 4}
Output: {3628800, 362880, 5040, 24}
Explanation: The suffix sum of the given array is {10, 9, 7, 4}. 
Therefore, suffix factorials of the obtained suffix sum array is {10!, 9!, 7!, 4!}

Input: arr[] = {2, 0}
Output: {2, 1}

 

Approach: The task can be solved by pre-calculating the factorials of all numbers till the entire sum of the array. So that the factorial calculation at each index of the suffix sum array is can be calculated in unit time.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the factorial of
// suffix sum at every possible index
void suffixFactorialArray(int A[], int N)
{
    // Find the suffix sum array
    for (int i = N - 2; i >= 0; i--) {
        A[i] += A[i + 1];
    }
 
    // Stores the factorial of all the
    // element till the sum of array
    int fact[A[0] + 1];
    fact[0] = 1;
 
    // Find the factorial array
    for (int i = 1; i <= A[0]; i++) {
        fact[i] = i * fact[i - 1];
    }
 
    // Find the factorials of
    // each array element
    for (int i = 0; i < N; i++) {
        A[i] = fact[A[i]];
    }
 
    // Print the resultant array
    for (int i = 0; i < N; i++) {
        cout << A[i] << " ";
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 4 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    suffixFactorialArray(arr, N);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
public class GFG
{
 
  // Function to find the factorial of
  // suffix sum at every possible index
  static void suffixFactorialArray(int[] A, int N) {
 
    // Find the suffix sum array
    for (int i = N - 2; i >= 0; i--) {
      A[i] += A[i + 1];
    }
 
    // Stores the factorial of all the
    // element till the sum of array
    int[] fact = new int[A[0] + 1];
    fact[0] = 1;
 
    // Find the factorial array
    for (int i = 1; i <= A[0]; i++) {
      fact[i] = i * fact[i - 1];
    }
 
    // Find the factorials of
    // each array element
    for (int i = 0; i < N; i++) {
      A[i] = fact[A[i]];
    }
 
    // Print the resultant array
    for (int i = 0; i < N; i++) {
      System.out.print(A[i] + " ");
    }
  }
 
  // Driver Code
  public static void main(String args[]) {
    int[] arr = { 1, 2, 3, 4 };
    int N = arr.length;
 
    suffixFactorialArray(arr, N);
  }
}
 
// This code is contributed by Saurabh Jaiswal


Python3




# python3 program for the above approach
 
# Function to find the factorial of
# suffix sum at every possible index
def suffixFactorialArray(A, N):
 
    # Find the suffix sum array
    for i in range(N-2, -1, -1):
        A[i] += A[i + 1]
 
    # Stores the factorial of all the
    # element till the sum of array
    fact = [0 for _ in range(A[0] + 1)]
    fact[0] = 1
 
    # Find the factorial array
    for i in range(1, A[0] + 1):
        fact[i] = i * fact[i - 1]
 
    # Find the factorials of
    # each array element
    for i in range(0, N):
        A[i] = fact[A[i]]
 
    # Print the resultant array
    for i in range(0, N):
        print(A[i], end=" ")
 
# Driver Code
if __name__ == "__main__":
 
    arr = [1, 2, 3, 4]
    N = len(arr)
 
    suffixFactorialArray(arr, N)
 
# This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
class GFG
{
 
  // Function to find the factorial of
  // suffix sum at every possible index
  static void suffixFactorialArray(int []A, int N)
  {
 
    // Find the suffix sum array
    for (int i = N - 2; i >= 0; i--) {
      A[i] += A[i + 1];
    }
 
    // Stores the factorial of all the
    // element till the sum of array
    int []fact = new int[A[0] + 1];
    fact[0] = 1;
 
    // Find the factorial array
    for (int i = 1; i <= A[0]; i++) {
      fact[i] = i * fact[i - 1];
    }
 
    // Find the factorials of
    // each array element
    for (int i = 0; i < N; i++) {
      A[i] = fact[A[i]];
    }
 
    // Print the resultant array
    for (int i = 0; i < N; i++) {
      Console.Write(A[i] + " ");
    }
  }
 
  // Driver Code
  public static void Main()
  {
    int []arr = { 1, 2, 3, 4 };
    int N = arr.Length;
 
    suffixFactorialArray(arr, N);
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find the factorial of
       // suffix sum at every possible index
       function suffixFactorialArray(A, N) {
           // Find the suffix sum array
           for (let i = N - 2; i >= 0; i--) {
               A[i] += A[i + 1];
           }
 
           // Stores the factorial of all the
           // element till the sum of array
           let fact = new Array(A[0] + 1);
           fact[0] = 1;
 
           // Find the factorial array
           for (let i = 1; i <= A[0]; i++) {
               fact[i] = i * fact[i - 1];
           }
 
           // Find the factorials of
           // each array element
           for (let i = 0; i < N; i++) {
               A[i] = fact[A[i]];
           }
 
           // Print the resultant array
           for (let i = 0; i < N; i++) {
               document.write(A[i] + " ");
           }
       }
 
       // Driver Code
 
       let arr = [1, 2, 3, 4];
       let N = arr.length;
 
       suffixFactorialArray(arr, N);
 
      // This code is contributed by Potta Lokesh
   </script>


Output

3628800 362880 5040 24 

Time Complexity: O(N + M), where M is the sum of array elements.
Auxiliary Space: O(M)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
12 Dec, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments