Monday, January 13, 2025
Google search engine
HomeData Modelling & AIFind the smallest twins in given range

Find the smallest twins in given range

Given a range [low..high], print the smallest twin numbers in given range (low and high inclusive). Two numbers are twins if they are primes and there difference is 2.

Example: 

Input:  low = 10,  high = 100
Output: Smallest twins in given range: (11, 13)
Both 11 and 13 are prime numbers and difference 
between them is two, therefore twins.  And these
are the smallest twins in [10..100]

Input:  low = 50,  high = 100
Output: Smallest twins in given range: (59, 61) 
Recommended Practice

A Simple Solution is to start to start from low and for every number x check if x and x + 2 are primes are not. Here x varies from low to high-2.

An Efficient Solution is to use Sieve of Eratosthenes  

1) Create a boolean array "prime[0..high]" and initialize all 
   entries in it as true. A value in prime[i] will finally 
   be false if i is not a prime number, else true.

2) Run a loop from p = 2 to high. 
    a) If prime[p] is true, then p is prime. [See this]
    b) Mark all multiples of p as not prime in prime[]. 

3) Run a loop from low to high and print the first twins
   using prime[] built in step 2.   

Below is the implementation of above idea. 

C++




// C++ program to find the smallest twin in given range
#include <bits/stdc++.h>
using namespace std;
 
void printTwins(int low, int high)
{
    // Create a boolean array "prime[0..high]" and initialize
    // all entries it as true. A value in prime[i] will finally
    // be false if i is Not a prime, else true.
    bool prime[high+1], twin = false;
    memset(prime, true, sizeof(prime));
 
    prime[0] = prime[1] = false;
 
    // Look for the smallest twin
    for (int p=2; p<=floor(sqrt(high))+1; p++)
    {
        // If p is not marked, then it is a prime
        if (prime[p])
        {
            // Update all multiples of p
            for (int i=p*2; i<=high; i += p)
                prime[i] = false;
        }
    }
 
    // Now print the smallest twin in range
    for (int i=low; i<=high; i++)
    {
        if (prime[i] && prime[i+2])
        {
            cout << "Smallest twins in given range: ("
                << i << ", " << i+2 << ")";
            twin = true;
            break;
        }
    }
     
    if (twin == false)
      cout << "No such pair exists" <<endl;
}
 
// Driver program
int main()
{
    printTwins(10, 100);
    return 0;
}


Java




// Java program to find the smallest twin in given range
 
class GFG {
 
    static void printTwins(int low, int high) {
        // Create a boolean array "prime[0..high]" and initialize
        // all entries it as true. A value in prime[i] will finally
        // be false if i is Not a prime, else true.
        boolean prime[] = new boolean[high + 1], twin = false;
        for (int i = 0; i < prime.length; i++) {
            prime[i] = true;
        }
 
        prime[0] = prime[1] = false;
 
        // Look for the smallest twin
        for (int p = 2; p <= Math.floor(Math.sqrt(high)) + 1; p++) {
            // If p is not marked, then it is a prime
            if (prime[p]) {
                // Update all multiples of p
                for (int i = p * 2; i <= high; i += p) {
                    prime[i] = false;
                }
            }
        }
 
        // Now print the smallest twin in range
        for (int i = low; i <= high; i++) {
            if (prime[i] && prime[i + 2]) {
                int a = i + 2 ;
                System.out.print("Smallest twins in given range: ("
                        + i + ", " + a + ")");
                twin = true;
                break;
            }
        }
 
        if (twin == false) {
            System.out.println("No such pair exists");
        }
    }
 
// Driver program
    public static void main(String[] args) {
 
        printTwins(10, 100);
    }
}
// This code contributed by Rajput-Ji


Python3




# Python3 program to find the smallest
# twin in given range
import math
 
def printTwins(low, high):
 
    # Create a boolean array "prime[0..high]"
    # and initialize all entries it as true.
    # A value in prime[i] will finally be
    # false if i is Not a prime, else true.
    prime = [True] * (high + 1);
    twin = False;
 
    prime[0] = prime[1] = False;
 
    # Look for the smallest twin
    for p in range(2, int(math.floor(
                          math.sqrt(high)) + 2)):
         
        # If p is not marked, then it
        # is a prime
        if (prime[p]):
             
            # Update all multiples of p
            for i in range(p * 2, high + 1, p):
                prime[i] = False;
 
    # Now print the smallest twin in range
    for i in range(low, high + 1):
        if (prime[i] and prime[i + 2]):
            print("Smallest twins in given range: (",
                               i, ",", (i + 2), ")");
            twin = True;
            break;
     
    if (twin == False):
        print("No such pair exists");
 
# Driver Code
printTwins(10, 100);
     
# This code is contributed
# by chandan_jnu


C#




     
// C# program to find the smallest twin in given range
 
using System;
public class GFG {
  
    static void printTwins(int low, int high) {
        // Create a boolean array "prime[0..high]" and initialize
        // all entries it as true. A value in prime[i] will finally
        // be false if i is Not a prime, else true.
        bool []prime = new bool[high + 1]; bool twin = false;
        for (int i = 0; i < prime.Length; i++) {
            prime[i] = true;
        }
  
        prime[0] = prime[1] = false;
  
        // Look for the smallest twin
        for (int p = 2; p <= Math.Floor(Math.Sqrt(high)) + 1; p++) {
            // If p is not marked, then it is a prime
            if (prime[p]) {
                // Update all multiples of p
                for (int i = p * 2; i <= high; i += p) {
                    prime[i] = false;
                }
            }
        }
  
        // Now print the smallest twin in range
        for (int i = low; i <= high; i++) {
            if (prime[i] && prime[i + 2]) {
                int a = i + 2 ;
                Console.Write("Smallest twins in given range: ("
                        + i + ", " + a + ")");
                twin = true;
                break;
            }
        }
  
        if (twin == false) {
            Console.WriteLine("No such pair exists");
        }
    }
  
// Driver program
    public static void Main() {
  
        printTwins(10, 100);
    }
}
//this code contributed by Rajput-Ji


PHP




<?php
// PHP program to find the smallest
// twin in given range
 
function printTwins($low, $high)
{
    // Create a boolean array "prime[0..high]"
    // and initialize all entries it as true.
    // A value in prime[i] will finally be
    // false if i is Not a prime, else true.
    $prime = array_fill(0, $high + 1, true);
    $twin = false;
 
    $prime[0] = $prime[1] = false;
 
    // Look for the smallest twin
    for ($p = 2; $p <= floor(sqrt($high)) + 1; $p++)
    {
        // If p is not marked, then it is a prime
        if ($prime[$p])
        {
            // Update all multiples of p
            for ($i = $p * 2; $i <= $high; $i += $p)
                $prime[$i] = false;
        }
    }
 
    // Now print the smallest twin in range
    for ($i = $low; $i <= $high; $i++)
    {
        if ($prime[$i] && $prime[$i + 2])
        {
            print("Smallest twins in given range: ($i, ".
                                          ($i + 2). ")");
            $twin = true;
            break;
        }
    }
     
    if ($twin == false)
    print("No such pair exists\n");
}
 
// Driver Code
printTwins(10, 100);
     
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript program to find the
// smallest twin in given range
function printTwins(low, high)
{
     
    // Create a boolean array "prime[0..high]"
    // and initialize all entries it as true.
    // A value in prime[i] will finally
    // be false if i is Not a prime, else true.
    var prime = Array.from({length: high + 1}, (_, i) => 0);
    var twin = false;
    for(i = 0; i < prime.length; i++)
    {
        prime[i] = true;
    }
     
    prime[0] = prime[1] = false;
     
    // Look for the smallest twin
    for(p = 2;
        p <= Math.floor(Math.sqrt(high)) + 1;
        p++)
    {
         
        // If p is not marked, then it is a prime
        if (prime[p])
        {
             
            // Update all multiples of p
            for(i = p * 2; i <= high; i += p)
            {
                prime[i] = false;
            }
        }
    }
     
    // Now print the smallest twin in range
    for(i = low; i <= high; i++)
    {
        if (prime[i] && prime[i + 2])
        {
            var a = i + 2 ;
            document.write("Smallest twins in " +
                           "given range: (" + i +
                           ", " + a + ")");
            twin = true;
            break;
        }
    }
     
    if (twin == false)
    {
        document.write("No such pair exists");
    }
}
 
// Driver code
printTwins(10, 100);
 
// This code is contributed by shikhasingrajput
 
</script>


Output: 

Smallest twins in given range: (11, 13)

 

Thanks to Utkarsh Trivedi for suggesting this solution.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments