Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind the row with maximum unique elements in given Matrix

Find the row with maximum unique elements in given Matrix

Given a matrix arr[][] of size N*M The task is to find the index of the row that has the maximum unique elements. If there are multiple rows possible, return the minimum indexed row.

Examples: 

Input: arr[][] = { {1, 2, 3, 4, 5}, {1, 2, 2, 4, 7}, {1, 3, 1, 3, 1} }       
Output: 0
Explanation: Rows 0, 1 & 2 have 5, 4 & 2 unique elements respectively.
 

Input: arr[][] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 1, 2, 3} }
Output : 0

 

Approach: The task can be solved using a set data structure. Iterate over the rows and store the corresponding element inside a set to keep track of the unique elements, return the minimum indexed row with maximum unique elements.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum indexed row
// with maximum unique elements
int get(int n, int m, vector<vector<int> >& v)
{
    // Stores the unique elements
    set<int> s;
 
    // Stores the minimum indexed row
    int max_ans = INT_MAX;
    int cnt = -1;
 
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            s.insert(v[i][j]);
        }
        int size = (int)s.size();
        if (cnt < size) {
            size = cnt;
            max_ans = min(max_ans, i);
        }
        s.clear();
    }
    return max_ans;
}
 
// Driver Code
int main()
{
 
    vector<vector<int> > arr
        = { { 1, 2, 3, 4, 5 },
            { 1, 2, 2, 4, 7 },
            { 1, 3, 1, 3, 1 } };
    int n = arr.size();
    int m = arr[0].size();
    cout << get(n, m, arr);
}


Java




// JAVA program for the above approach
import java.util.*;
class GFG
{
 
  // Function to find the minimum indexed row
  // with maximum unique elements
  public static int get(int n, int m,
                        ArrayList<ArrayList<Integer> > v)
  {
    // Stores the unique elements
    HashSet<Integer> s = new HashSet<Integer>();
 
    // Stores the minimum indexed row
    int max_ans = Integer.MAX_VALUE;
    int cnt = -1;
 
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        s.add(v.get(i).get(j));
      }
      int size = (int)s.size();
      if (cnt < size) {
        size = cnt;
        max_ans = Math.min(max_ans, i);
      }
      s.clear();
    }
    return max_ans;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
 
    ArrayList<ArrayList<Integer> > arr
      = new ArrayList<ArrayList<Integer> >();
    ArrayList<Integer> temp1
      = new ArrayList<>(Arrays.asList(1, 2, 3, 4, 5));
    ArrayList<Integer> temp2
      = new ArrayList<>(Arrays.asList(1, 2, 2, 4, 7));
    ArrayList<Integer> temp3
      = new ArrayList<>(Arrays.asList(1, 3, 1, 3, 1));
    arr.add(temp1);
    arr.add(temp2);
    arr.add(temp3);
    int n = arr.size();
    int m = arr.get(0).size();
    System.out.print(get(n, m, arr));
  }
}
 
// This code is contributed by Taranpreet


Python3




# Python program for the above approach
 
# Function to find the minimum indexed row
# with maximum unique elements
def get(n, m, v):
    s = set()
     
    # Stores the minimum indexed row
    max_ans = 1000000000
    cnt = -1
    for i in range(0, n):
        for j in range(0, m):
            s.add(v[i][j])
            size = len(s)
            if cnt < size:
                size = cnt
                max_ans = min(max_ans, i)
            s.clear()
    return max_ans
 
if __name__ == "__main__":
    arr = [[1, 2, 3, 4, 5],
           [1, 2, 2, 4, 7],
           [1, 3, 1, 3, 1]]
    n = 3
    m = 5
    print(get(n, m, arr))
 
# This code is contributed by Rohit Pradhan


C#




// C# program for the above approach
using System;
using System.Linq;
using System.Collections.Generic;
 
public class GFG {
 
  // Function to find the minimum indexed row
  // with maximum unique elements
  public static int get(int n, int m, List<List<int>> v) {
    // Stores the unique elements
    HashSet<int> s = new HashSet<int>();
 
    // Stores the minimum indexed row
    int max_ans = int.MaxValue;
    int cnt = -1;
 
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        s.Add(v[i][j]);
      }
      int size = (int) s.Count;
      if (cnt < size) {
        size = cnt;
        max_ans = Math.Min(max_ans, i);
      }
      s.Clear();
    }
    return max_ans;
  }
 
  // Driver Code
  public static void Main(String[] args) {
 
    List<List<int>> arr = new List<List<int>>();
    int [] t1 = {1, 2, 3, 4, 5};
    List<int> temp1 = new List<int>();
    temp1 = (t1.ToList());
    List<int> temp2 = new List<int>();
    int []t2 = {1, 2, 2, 4, 7};
    temp2 = (t2.ToList());
    List<int> temp3 = new List<int>();
    int[] t3 = {1, 3, 1, 3, 1};
    temp3 = t3.ToList();
    arr.Add(temp1);
    arr.Add(temp2);
    arr.Add(temp3);
    int n = arr.Count;
    int m = arr[0].Count;
    Console.Write(get(n, m, arr));
  }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find the minimum indexed row
       // with maximum unique elements
       function get(n, m, v) {
           // Stores the unique elements
           let s = new Set();
 
           // Stores the minimum indexed row
           let max_ans = Number.MAX_VALUE;
           let cnt = -1;
 
           for (let i = 0; i < n; i++) {
               for (let j = 0; j < m; j++) {
                   s.add(v[i][j]);
               }
               let size = s.size;
               if (cnt < size) {
                   size = cnt;
                   max_ans = Math.min(max_ans, i);
               }
               s.clear();
           }
           return max_ans;
       }
 
       // Driver Code
 
 
       let arr
           = [[1, 2, 3, 4, 5],
           [1, 2, 2, 4, 7],
           [1, 3, 1, 3, 1]];
       let n = arr.length;
       let m = arr[0].length;
       document.write(get(n, m, arr));
 
      // This code is contributed by Potta Lokesh
   </script>


 
 

Output

0

 

Time Complexity: O(N*M*logM)
Auxiliary Space: O(M)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
17 Apr, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments