Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIFind the row up to which there are at least K stars...

Find the row up to which there are at least K stars in the Diamond Pattern

Given two integers N and K, where N represents a diamond pattern with (2 * N) -1 rows, the task is to find the index of the first row up to which there are at least K stars in a diamond pattern.

Please note that the value of K will always have a definite answer.

Examples:

Input: N = 3 , K = 8
Output: 4
Explanation: The first 4 rows contain a total of 8 stars.
                               *

                              * *

                             * * *

                              * *

                               *
Input: N = 5, K = 5
Output: 3

 

Naive Approach: The given problem can be solved by simply iterating over each row and maintaining the count of the number of stars in each row. Print the first two where the count of stars exceeds K. 

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the index of
// required row
void get(int N, int K)
{
    // Stores the count of stars
    // till ith row
    int sum = 0, ans;
 
    // Iterating over the rows
    for (int i = 1; i <= 2 * N - 1; i++) {
 
        // Upper half
        if (i <= N) {
            sum += i;
        }
 
        // Lower half
        else {
            sum += 2 * N - i;
        }
 
        // Atleast K stars are found
        if (sum >= K) {
            ans = i;
            break;
        }
    }
 
    // Print Answer
    cout << ans << endl;
}
 
// Driver Code
int main()
{
    int N = 3, K = 8;
    get(N, K);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
  // Function to find the index of
  // required row
  static void get(int N, int K)
  {
 
    // Stores the count of stars
    // till ith row
    int sum = 0, ans = 0;
 
    // Iterating over the rows
    for (int i = 1; i <= 2 * N - 1; i++) {
 
      // Upper half
      if (i <= N) {
        sum += i;
      }
 
      // Lower half
      else {
        sum += 2 * N - i;
      }
 
      // Atleast K stars are found
      if (sum >= K) {
        ans = i;
        break;
      }
    }
 
    // Print Answer
    System.out.print(ans +"\n");
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int N = 3, K = 8;
    get(N, K);
  }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python program for the above approach
 
# Function to find the index of
# required row
def get(N, K):
   
    # Stores the count of stars
    # till ith row
    sum = 0;
    ans = 0;
 
    # Iterating over the rows
    for i in range(1,2*N):
 
        # Upper half
        if (i <= N):
            sum += i;
 
        # Lower half
        else:
            sum += 2 * N - i;
 
        # Atleast K stars are found
        if (sum >= K):
            ans = i;
            break;
 
    # Print Answer
    print(ans);
 
# Driver Code
if __name__ == '__main__':
    N = 3;
    K = 8;
    get(N, K);
 
# This code is contributed by 29AjayKumar


C#




// C# program for the above approach
using System;
 
public class GFG
{
 
  // Function to find the index of
  // required row
  static void get(int N, int K)
  {
 
    // Stores the count of stars
    // till ith row
    int sum = 0, ans = 0;
 
    // Iterating over the rows
    for (int i = 1; i <= 2 * N - 1; i++) {
 
      // Upper half
      if (i <= N) {
        sum += i;
      }
 
      // Lower half
      else {
        sum += 2 * N - i;
      }
 
      // Atleast K stars are found
      if (sum >= K) {
        ans = i;
        break;
      }
    }
 
    // Print Answer
    Console.Write(ans +"\n");
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    int N = 3, K = 8;
    get(N, K);
  }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript program for the above approach
 
// Function to find the index of
// required row
function get(N, K)
{
 
    // Stores the count of stars
    // till ith row
    let sum = 0, ans;
 
    // Iterating over the rows
    for (let i = 1; i <= 2 * N - 1; i++) {
 
        // Upper half
        if (i <= N) {
            sum += i;
        }
 
        // Lower half
        else {
            sum += 2 * N - i;
        }
 
        // Atleast K stars are found
        if (sum >= K) {
            ans = i;
            break;
        }
    }
 
    // Print Answer
    document.write(ans);
}
 
// Driver Code
let N = 3, K = 8;
get(N, K);
 
// This code is contributed by saurabh_jaiswal.
</script>


Output

4

Time Complexity: O(N)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized using binary search on the value of the number of rows from [0, 2*n-1]. Follow the steps below to solve the problem:

  • Initialize variables start = 0, end = (2 * N) – 1 and,  ans = 0.
  • Follow these steps while the value of the start is less than the end.
    • Calculate mid which is equal to (start + end) / 2
    • Count the number of stars till mid.
    • If the number of stars till mid are greater than or equal to K, store the mid into the variable and move towards the left of mid by end = mid-1
    • Else, move right of mid by start = mid+1
  • Return ans which is the required value.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of rows
int count_rows(int n, int k)
{
   
    // A diamond pattern contains
    // 2*n-1 rows so end = 2*n-1
    int start = 1, end = 2 * n - 1, ans = 0;
 
    // Loop for the binary search
    while (start <= end) {
        int mid = start - (start - end) / 2;
 
        int stars_till_mid = 0;
 
        if (mid > n) {
 
            // l_stars is no of rows in
            // lower triangle of diamond
            int l_stars = 2 * n - 1 - mid;
            int till_half = (n * (n + 1)) / 2;
 
            stars_till_mid
                = till_half + ((n - 1) * (n)) / 2
                  - ((l_stars) * (l_stars + 1)) / 2;
        }
        else {
 
            // No of stars till mid th row
            stars_till_mid = mid * (mid + 1) / 2;
        }
 
        // Check if k > starts_till_mid
        if (k <= stars_till_mid) {
            ans = mid;
            end = mid - 1;
        }
        else
            start = mid + 1;
    }
 
    // Return Answer
    return ans;
}
 
// Driver function
int main()
{
    int N = 3, K = 8;
 
    // Call the function
    // and print the answer
    cout << count_rows(N, K);
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
  // Function to count the number of rows
  static int count_rows(int n, int k)
  {
 
    // A diamond pattern contains
    // 2*n-1 rows so end = 2*n-1
    int start = 1, end = 2 * n - 1, ans = 0;
 
    // Loop for the binary search
    while (start <= end) {
      int mid = start - (start - end) / 2;
 
      int stars_till_mid = 0;
 
      if (mid > n) {
 
        // l_stars is no of rows in
        // lower triangle of diamond
        int l_stars = 2 * n - 1 - mid;
        int till_half = (n * (n + 1)) / 2;
 
        stars_till_mid
          = till_half + ((n - 1) * (n)) / 2
          - ((l_stars) * (l_stars + 1)) / 2;
      }
      else {
 
        // No of stars till mid th row
        stars_till_mid = mid * (mid + 1) / 2;
      }
 
      // Check if k > starts_till_mid
      if (k <= stars_till_mid) {
        ans = mid;
        end = mid - 1;
      }
      else
        start = mid + 1;
    }
 
    // Return Answer
    return ans;
  }
 
  // Driver function
  public static void main(String[] args)
  {
    int N = 3, K = 8;
 
    // Call the function
    // and print the answer
    System.out.print(count_rows(N, K));
  }
}
 
// This code is contributed by 29AjayKumar


Python3




# python3 program for the above approach
 
# Function to count the number of rows
def count_rows(n, k):
 
        # A diamond pattern contains
        # 2*n-1 rows so end = 2*n-1
    start = 1
    end = 2 * n - 1
    ans = 0
 
    # Loop for the binary search
    while (start <= end):
        mid = start - (start - end) // 2
 
        stars_till_mid = 0
 
        if (mid > n):
 
            # l_stars is no of rows in
            # lower triangle of diamond
            l_stars = 2 * n - 1 - mid
            till_half = (n * (n + 1)) / 2
 
            stars_till_mid = till_half + \
                ((n - 1) * (n)) / 2 - ((l_stars) * (l_stars + 1)) / 2
 
        else:
 
            # No of stars till mid th row
            stars_till_mid = mid * (mid + 1) / 2
 
            # Check if k > starts_till_mid
        if (k <= stars_till_mid):
            ans = mid
            end = mid - 1
        else:
            start = mid + 1
 
        # Return Answer
    return ans
 
# Driver function
if __name__ == "__main__":
 
    N = 3
    K = 8
 
    # Call the function
    # and print the answer
    print(count_rows(N, K))
 
    # This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
class GFG{
 
  // Function to count the number of rows
  static int count_rows(int n, int k)
  {
 
    // A diamond pattern contains
    // 2*n-1 rows so end = 2*n-1
    int start = 1, end = 2 * n - 1, ans = 0;
 
    // Loop for the binary search
    while (start <= end) {
      int mid = start - (start - end) / 2;
 
      int stars_till_mid = 0;
 
      if (mid > n) {
 
        // l_stars is no of rows in
        // lower triangle of diamond
        int l_stars = 2 * n - 1 - mid;
        int till_half = (n * (n + 1)) / 2;
 
        stars_till_mid
          = till_half + ((n - 1) * (n)) / 2
          - ((l_stars) * (l_stars + 1)) / 2;
      }
      else {
 
        // No of stars till mid th row
        stars_till_mid = mid * (mid + 1) / 2;
      }
 
      // Check if k > starts_till_mid
      if (k <= stars_till_mid) {
        ans = mid;
        end = mid - 1;
      }
      else
        start = mid + 1;
    }
 
    // Return Answer
    return ans;
  }
 
  // Driver function
  public static void Main()
  {
    int N = 3, K = 8;
 
    // Call the function
    // and print the answer
    Console.Write(count_rows(N, K));
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to count the number of rows
const count_rows = (n, k) => {
     
    // A diamond pattern contains
    // 2*n-1 rows so end = 2*n-1
    let start = 1, end = 2 * n - 1, ans = 0;
 
    // Loop for the binary search
    while (start <= end)
    {
        let mid = start - parseInt((start - end) / 2);
        let stars_till_mid = 0;
 
        if (mid > n)
        {
             
            // l_stars is no of rows in
            // lower triangle of diamond
            let l_stars = 2 * n - 1 - mid;
            let till_half = (n * (n + 1)) / 2;
 
            stars_till_mid = till_half + ((n - 1) * (n)) / 2 -
                            ((l_stars) * (l_stars + 1)) / 2;
        }
        else
        {
             
            // No of stars till mid th row
            stars_till_mid = mid * (mid + 1) / 2;
        }
 
        // Check if k > starts_till_mid
        if (k <= stars_till_mid)
        {
            ans = mid;
            end = mid - 1;
        }
        else
            start = mid + 1;
    }
 
    // Return Answer
    return ans;
}
 
// Driver code
let N = 3, K = 8;
 
// Call the function
// and print the answer
document.write(count_rows(N, K));
 
// This code is contributed by rakeshsahni
 
</script>


Output

4

Time Complexity: O(log N)
Auxiliary Space: O(1)

 

Last Updated :
11 Feb, 2022
Like Article
Save Article
Take a part in the ongoing discussion

RELATED ARTICLES

Most Popular

Recent Comments