Wednesday, July 3, 2024
HomeData ModellingData Structure & AlgorithmFind the root of the sub-tree whose weighted sum XOR with X...

Find the root of the sub-tree whose weighted sum XOR with X is maximum

Given a tree, and the weights of all the nodes, the task is to find the root of the sub-tree whose weighted sum XOR with given integer X is maximum.
Examples: 
 

Input: 
 

X = 15 
Output:
Weight of sub-tree for parent 1 = ((-1) + (5) + (-2) + (-1) + (3)) XOR 15 = 4 XOR 15 = 11 
Weight of sub-tree for parent 2 = ((5) + (-1) + (3)) XOR 15 = 7 XOR 15 = 8 
Weight of sub-tree for parent 3 = -1 XOR 15 = -16 
Weight of sub-tree for parent 4 = 3 XOR 15 = 12 
Weight of sub-tree for parent 5 = -2 XOR 15 = -15 
Node 4 gives the maximum sub-tree weighted sum XOR X. 
 

 

Approach: Perform dfs on the tree, and for every node calculate the sub-tree weighted sum rooted at the current node then find the maximum (sum XOR X) value for a node.
Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int ans = 0, maxi = INT_MIN;
 
vector<int> graph[100];
vector<int> weight(100);
 
// Function to perform dfs and update the tree
// such that every node's weight is the sum of
// the weights of all the nodes in the sub-tree
// of the current node including itself
void dfs(int node, int parent)
{
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
 
        // Calculating the weighted
        // sum of the subtree
        weight[node] += weight[to];
    }
}
 
// Function to find the node
// having maximum sub-tree sum XOR x
void findMaxX(int n, int x)
{
 
    // For every node
    for (int i = 1; i <= n; i++) {
 
        // If current node's weight XOR x
        // is maximum so far
        if (maxi < (weight[i] ^ x)) {
            maxi = (weight[i] ^ x);
            ans = i;
        }
    }
}
 
// Driver code
int main()
{
    int x = 15;
    int n = 5;
 
    // Weights of the node
    weight[1] = -1;
    weight[2] = 5;
    weight[3] = -1;
    weight[4] = 3;
    weight[5] = -2;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    dfs(1, 1);
    findMaxX(n, x);
 
    cout << ans;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
    static int ans = 0, maxi = Integer.MIN_VALUE;
 
    static Vector<Integer>[] graph = new Vector[100];
    static Integer[] weight = new Integer[100];
 
    // Function to perform dfs and update the tree
    // such that every node's weight is the sum of
    // the weights of all the nodes in the sub-tree
    // of the current node including itself
    static void dfs(int node, int parent)
    {
        for (int to : graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
 
            // Calculating the weighted
            // sum of the subtree
            weight[node] += weight[to];
        }
    }
 
    // Function to find the node
    // having maximum sub-tree sum XOR x
    static void findMaxX(int n, int x)
    {
 
        // For every node
        for (int i = 1; i <= n; i++)
        {
 
            // If current node's weight XOR x
            // is maximum so far
            if (maxi < (weight[i] ^ x))
            {
                maxi = (weight[i] ^ x);
                ans = i;
            }
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int x = 15;
        int n = 5;
        for (int i = 0; i < 100; i++)
            graph[i] = new Vector<Integer>();
         
        // Weights of the node
        weight[1] = -1;
        weight[2] = 5;
        weight[3] = -1;
        weight[4] = 3;
        weight[5] = -2;
 
        // Edges of the tree
        graph[1].add(2);
        graph[2].add(3);
        graph[2].add(4);
        graph[1].add(5);
 
        dfs(1, 1);
        findMaxX(n, x);
 
        System.out.print(ans);
    }
}
 
// This code is contributed by Rajput-Ji


Python




# Python implementation of the approach
from sys import maxsize
 
# Function to perform dfs and update the tree
# such that every node's weight is the sum of
# the weights of all the nodes in the sub-tree
# of the current node including itself
def dfs(node, parent):
    global maxi, graph, weight, x, ans
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
         
        # Calculating the weighted
        # sum of the subtree
        weight[node] += weight[to]
         
# Function to find the node
# having maximum sub-tree sum XOR x
def findMaxX(n, x):
    global maxi, graph, weight, ans
     
    # For every node
    for i in range(1, n + 1):
         
        # If current node's weight XOR x
        # is maximum so far
        if (maxi < (weight[i] ^ x)):
            maxi = (weight[i] ^ x)
            ans = i
 
# Driver code
ans = 0
maxi = -maxsize
 
graph = [[] for i in range(100)]
weight = [0]*100
x = 15
n = 5
 
# Weights of the node
weight[1] = -1
weight[2] = 5
weight[3] = -1
weight[4] = 3
weight[5] = -2
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
 
dfs(1, 1)
findMaxX(n, x)
 
print(ans)
 
# This code is contributed by SHUBHAMSINGH10


C#




     
// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
    static int ans = 0, maxi = int.MinValue;
 
    static List<int>[] graph = new List<int>[100];
    static int[] weight = new int[100];
 
    // Function to perform dfs and update the tree
    // such that every node's weight is the sum of
    // the weights of all the nodes in the sub-tree
    // of the current node including itself
    static void dfs(int node, int parent)
    {
        foreach (int to in graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
 
            // Calculating the weighted
            // sum of the subtree
            weight[node] += weight[to];
        }
    }
 
    // Function to find the node
    // having maximum sub-tree sum XOR x
    static void findMaxX(int n, int x)
    {
 
        // For every node
        for (int i = 1; i <= n; i++)
        {
 
            // If current node's weight XOR x
            // is maximum so far
            if (maxi < (weight[i] ^ x))
            {
                maxi = (weight[i] ^ x);
                ans = i;
            }
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int x = 15;
        int n = 5;
        for (int i = 0; i < 100; i++)
            graph[i] = new List<int>();
         
        // Weights of the node
        weight[1] = -1;
        weight[2] = 5;
        weight[3] = -1;
        weight[4] = 3;
        weight[5] = -2;
 
        // Edges of the tree
        graph[1].Add(2);
        graph[2].Add(3);
        graph[2].Add(4);
        graph[1].Add(5);
 
        dfs(1, 1);
        findMaxX(n, x);
 
        Console.Write(ans);
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// Javascript implementation of the approach
    let maxi = Number.MIN_VALUE, x, ans;
    let graph = new Array(100);
    let weight = new Array(100);
    for(let i = 0; i < 100; i++)
    {
        graph[i] = [];
        weight[i] = 0;
    }
     
    // Function to perform dfs and update the tree
    // such that every node's weight is the sum of
    // the weights of all the nodes in the sub-tree
    // of the current node including itself
    function  dfs(node, parent)
    {
        for(let to in graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
   
            // Calculating the weighted
            // sum of the subtree
            weight[node] += weight[to];
        }
    }
     
    // Function to find the node
    // having maximum sub-tree sum XOR x
    function findMaxX(n, x)
    {
     
        // For every node
        for (let i = 1; i <= n; i++)
        {
   
            // If current node's weight XOR x
            // is maximum so far
            if (maxi < (weight[i] ^ x))
            {
                maxi = (weight[i] ^ x);
                ans = i;
            }
        }
    }
     
    // Driver Code
    x = 15;
    let n = 5;
     
   // Weights of the node
    weight[1] = -1;
    weight[2] = 5;
    weight[3] = -1;
    weight[4] = 3;
    weight[5] = -2;
 
    // Edges of the tree
    graph[1].push(2);
    graph[2].push(3);
    graph[2].push(4);
    graph[1].push(5);
 
    dfs(1, 1);
    findMaxX(n, x);
    document.write(ans);
     
    // This code is contributed by unknown2108
</script>


Output: 

4

 

Complexity Analysis: 
 

  • Time Complexity : O(N). 
    In dfs, every node of the tree is processed once and hence the complexity due to the dfs is O(N) if there are total N nodes in the tree. Therefore, the time complexity is O(N).
  • Auxiliary Space : O(n). 
    Recursion Stack.

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Shaida Kate Naidoo
am passionate about learning the latest technologies available to developers in either a Front End or Back End capacity. I enjoy creating applications that are well designed and responsive, in addition to being user friendly. I thrive in fast paced environments. With a diverse educational and work experience background, I excel at collaborating with teams both local and international. A versatile developer with interests in Software Development and Software Engineering. I consider myself to be adaptable and a self motivated learner. I am interested in new programming technologies, and continuous self improvement.
RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Recent Comments