Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFind the root of given non decreasing function between A and B

Find the root of given non decreasing function between A and B

Given three numbers a, b, and c that forms a monotonically increasing function f(x)  of the form a*x2 + b*x + c and two number A and B, the task is to find the root of the function i.e., find the value of x such that f(x) = 0 where A ? x ? B.
 

Examples:

Input: a = 2, b = -3, c = -2, A = 0, B = 3 
Output: 2.0000 
Explanation: 
f(x) = 2x^2 – 3x – 2 putting the value of x = 2.000 
We get f(2.000) = 2(2.000)^2 – 3(2.000) – 2 = 0
Input: a = 2, b = -3, c = -2, A = -2, B = 1 
Output: No solution

Approach: Below is the graphical representation of any functionf(x)  :

From the above graph, we have,

  1. Whenever f(A)*f(B) ? 0, it means that the graph of the function will cut the x-axis somewhere within that range and signifies that somewhere there is a point which makes the value of the function as 0 and then the graph proceeds to be negative y-axis.
  2. If f(A)*f(B) > 0, it means that in this range [A, B] the y values of f(A) and f(B) both remain positive throughout, so they never cut x-axis.

Therefore, from the above observation, the idea is to use Binary Search to solve this problem. Using the given range of [A, B] as lower and upper bound for the root of the equation, x can be found out by applying binary search on this range. Below are the steps:

  1. Find the middle(say mid) of the range [A, B].
  2. If f(mid)*f(A) ? 0 is true then search space is reduced to [A, mid], because the cut at x-axis has been occurred in this segment.
  3. Else search space is reduced to [mid, B]
  4. The minimum possible value for root is when the high value becomes just smaller than EPS(the smallest value ~10-6) + lower bound value i.e., fabs(high – low) > EPS.
  5. Print the value of the root.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
#define eps 1e-6
 
// Given function
double func(double a, double b,
            double c, double x)
{
    return a * x * x + b * x + c;
}
 
// Function to find the root of the
// given non-decreasing Function
double findRoot(double a, double b,
                double c, double low,
                double high)
{
    double x;
 
    // To get the minimum possible
    // answer for the root
    while (fabs(high - low) > eps) {
 
        // Find mid
        x = (low + high) / 2;
 
        // Search in [low, x]
        if (func(a, b, c, low)
                * func(a, b, c, x)
            <= 0) {
            high = x;
        }
 
        // Search in [x, high]
        else {
            low = x;
        }
    }
 
    // Return the required answer
    return x;
}
 
// Function to find the roots of the
// given equation within range [a, b]
void solve(double a, double b, double c,
        double A, double B)
{
 
    // If root doesn't exists
    if (func(a, b, c, A)
            * func(a, b, c, B)
        > 0) {
        cout << "No solution";
    }
 
    // Else find the root upto 4
    // decimal places
    else {
        cout << fixed
            << setprecision(4)
            << findRoot(a, b, c,
                        A, B);
    }
}
 
// Driver Code
int main()
{
    // Given range
    double a = 2, b = -3, c = -2,
        A = 0, B = 3;
 
    // Function Call
    solve(a, b, c, A, B);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
import java.lang.*;
 
class GFG{
     
static final double eps = 1e-6;
 
// Given function
static double func(double a, double b,
                   double c, double x)
{
    return a * x * x + b * x + c;
}
 
// Function to find the root of the
// given non-decreasing Function
static double findRoot(double a, double b,
                       double c, double low,
                       double high)
{
    double x = -1;
     
    // To get the minimum possible
    // answer for the root
    while (Math.abs(high - low) > eps)
    {
         
        // Find mid
        x = (low + high) / 2;
         
        // Search in [low, x]
        if (func(a, b, c, low) *
            func(a, b, c, x) <= 0)
        {
            high = x;
        }
         
        // Search in [x, high]
        else
        {
            low = x;
        }
    }
     
    // Return the required answer
    return x;
}
 
// Function to find the roots of the
// given equation within range [a, b]
static void solve(double a, double b, double c,
                  double A, double B)
{
     
    // If root doesn't exists
    if (func(a, b, c, A) * func(a, b, c, B) > 0)
    {
        System.out.println("No solution");
    }
     
    // Else find the root upto 4
    // decimal places
    else
    {
        System.out.format("%.4f", findRoot(
            a, b, c, A, B));
    }
}
 
// Driver Code
public static void main (String[] args)
{
     
    // Given range
    double a = 2, b = -3, c = -2,
           A = 0, B = 3;
            
    // Function call
    solve(a, b, c, A, B);
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program for the above approach
import math
eps = 1e-6
 
# Given function
def func(a ,b , c , x):
 
    return a * x * x + b * x + c
 
# Function to find the root of the
# given non-decreasing Function
def findRoot( a, b, c, low, high):
 
    x = -1
     
    # To get the minimum possible
    # answer for the root
    while abs(high - low) > eps:
     
        # Find mid
        x = (low + high) / 2
         
        # Search in [low, x]
        if (func(a, b, c, low) *
            func(a, b, c, x) <= 0):
            high = x
     
        # Search in [x, high]
        else:
            low = x
             
    # Return the required answer
    return x
 
# Function to find the roots of the
# given equation within range [a, b]
def solve(a, b, c, A, B):
 
    # If root doesn't exists
    if (func(a, b, c, A) *
        func(a, b, c, B) > 0):
        print("No solution")
     
    # Else find the root upto 4
    # decimal places
    else:
        print("{:.4f}".format(findRoot(
              a, b, c, A, B)))
     
# Driver code
if __name__ == '__main__':
 
    # Given range
    a = 2
    b = -3
    c = -2
    A = 0
    B = 3
             
    # Function call
    solve(a, b, c, A, B)
 
# This code is contributed by jana_sayantan


C#




// C# program for the above approach
using System;
 
class GFG{
     
static readonly double eps = 1e-6;
 
// Given function
static double func(double a, double b,
                   double c, double x)
{
    return a * x * x + b * x + c;
}
 
// Function to find the root of the
// given non-decreasing Function
static double findRoot(double a, double b,
                       double c, double low,
                       double high)
{
    double x = -1;
     
    // To get the minimum possible
    // answer for the root
    while (Math.Abs(high - low) > eps)
    {
         
        // Find mid
        x = (low + high) / 2;
         
        // Search in [low, x]
        if (func(a, b, c, low) *
            func(a, b, c, x) <= 0)
        {
            high = x;
        }
         
        // Search in [x, high]
        else
        {
            low = x;
        }
    }
     
    // Return the required answer
    return x;
}
 
// Function to find the roots of the
// given equation within range [a, b]
static void solve(double a, double b, double c,
                  double A, double B)
{
     
    // If root doesn't exists
    if (func(a, b, c, A) * func(a, b, c, B) > 0)
    {
        Console.WriteLine("No solution");
    }
     
    // Else find the root upto 4
    // decimal places
    else
    {
        Console.Write("{0:F4}", findRoot(
            a, b, c, A, B));
    }
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given range
    double a = 2, b = -3, c = -2,
           A = 0, B = 3;
             
    // Function call
    solve(a, b, c, A, B);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program for the above approach
  
let eps = 1e-6;
   
// Given function
function func(a, b,
                   c, x)
{
    return a * x * x + b * x + c;
}
   
// Function to find the root of the
// given non-decreasing Function
function findRoot(a, b,
                       c, low,
                        high)
{
    let x = -1;
       
    // To get the minimum possible
    // answer for the root
    while (Math.abs(high - low) > eps)
    {
           
        // Find mid
        x = (low + high) / 2;
           
        // Search in [low, x]
        if (func(a, b, c, low) *
            func(a, b, c, x) <= 0)
        {
            high = x;
        }
           
        // Search in [x, high]
        else
        {
            low = x;
        }
    }
       
    // Return the required answer
    return x;
}
   
// Function to find the roots of the
// given equation within range [a, b]
function solve(a, b, c, A, B)
{
       
    // If root doesn't exists
    if (func(a, b, c, A) * func(a, b, c, B) > 0)
    {
        document.write("No solution");
    }
       
    // Else find the root upto 4
    // decimal places
    else
    {
        document.write(findRoot(
            a, b, c, A, B));
    }
}
 
// Driver Code
 
      // Given range
    let a = 2, b = -3, c = -2,
           A = 0, B = 3;
              
    // Function call
    solve(a, b, c, A, B);
      
</script>


Output: 

2.0000

Time Complexity: O(log(B – A)) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
07 May, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments