Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind the repeating element in an Array of size N consisting of...

Find the repeating element in an Array of size N consisting of first M natural numbers

Given an array arr[] of size N, which contains a permutation of numbers from 1 to M, as well as an element that is repeated(one or more times), the task is to find the repeating element.

Examples:

Input: arr[]={2, 6, 4, 3, 1, 5, 2}, N=7
Output:
2
Explanation: In arr[], all elements from 0 to 6 occurs once, except 2 which is repeated once.

Input: arr[]={2, 1, 3, 1, 1, 1}, N=6
Output:
1

Naive Approach: The naive approach would be to sort the array and check for adjacent elements that are equal.

C++




// C++ program to find the repeating element
// in an array using naive approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the repeating element
int findRepeatingElement(int arr[], int n, int m) {
    // Sort the given array
    sort(arr, arr + n);
   
    // Traverse the sorted array to find the repeating
    // element
    for (int i = 0; i < n-1; i++) {
        if (arr[i] == arr[i + 1]) {
            return arr[i];
        }
    }
 
    // If no repeating element found
    return -1;
}
 
// Driver code
int main() {
      // Input array
    int arr[] = { 2, 6, 4, 3, 1, 5, 2 };
       
    int n = sizeof(arr) / sizeof(arr[0]);
    int m = 4;
      
      // Function call to find the repeating element
    int repeating_element = findRepeatingElement(arr, n, m);
 
    // Print the repeating element
    cout<< repeating_element << endl;
 
    return 0;
}


Java




// Java program to find the repeating element
// in an array using naive approach
 
import java.util.Arrays;
 
public class GFG {
    // Function to find the repeating element
    public static int findRepeatingElement(int[] arr, int n, int m) {
        // Sort the given array
        Arrays.sort(arr);
 
        // Traverse the sorted array to find the repeating element
        for (int i = 0; i < n - 1; i++) {
            if (arr[i] == arr[i + 1]) {
                return arr[i];
            }
        }
 
        // If no repeating element found
        return -1;
    }
 
    // Driver code
    public static void main(String[] args) {
        // Input array
        int[] arr = { 2, 1, 3, 1, 1, 1};
        int n = arr.length;
        int m = 4;
 
        // Function call to find the repeating element
        int repeating_element = findRepeatingElement(arr, n, m);
 
        // Print the repeating element
        System.out.println(repeating_element);
    }
}


Python3




def find_repeating_element(arr, n, m):
    arr.sort()
    for i in range(n - 1):
        if arr[i] == arr[i + 1]:
            return arr[i]
    return -1
# Input array
arr = [2, 6, 4, 3, 1, 5, 2]
n = len(arr)
m = 4
 
# Function call to find the repeating element
repeating_element = find_repeating_element(arr, n, m)
# Print the repeating element
print(repeating_element)
 
# This code is contributed by shivhack999


C#




using System;
 
class Program
{
 
  // Function to find the repeating element
  static int findRepeatingElement(int[] arr, int n, int m)
  {
 
    // Sort the given array
    Array.Sort(arr);
 
    // Traverse the sorted array to find the repeating
    // element
    for (int i = 0; i < n-1; i++) {
      if (arr[i] == arr[i + 1]) {
        return arr[i];
      }
    }
 
    // If no repeating element found
    return -1;
  }
 
  // Driver code
  static void Main(string[] args)
  {
     
    // Input array
    int[] arr = { 2, 6, 4, 3, 1, 5, 2 };
    int n = arr.Length;
    int m = 4;
 
    // Function call to find the repeating element
    int repeating_element = findRepeatingElement(arr, n, m);
 
    // Print the repeating element
    Console.WriteLine(repeating_element);
  }
}


Javascript




// Function to find the repeating element
function findRepeatingElement(arr, n, m) {
    // Sort the given array
    arr.sort();
   
    // Traverse the sorted array to find the repeating
    // element
    for (let i = 0; i < n-1; i++) {
        if (arr[i] == arr[i + 1]) {
            return arr[i];
        }
    }
 
    // If no repeating element found
    return -1;
}
 
// Input array
let arr = [2, 6, 4, 3, 1, 5, 2];
let n = arr.length;
let m = 4;
      
// Function call to find the repeating element
let repeating_element = findRepeatingElement(arr, n, m);
 
// Print the repeating element
console.log(repeating_element);


Output

2

Time Complexity: O(NlogN)
Auxiliary Space: O(1)

Approach: Follow the steps below to solve the problem:

  1. Initialize two variables M and sum to store the maximum element and the sum of the array respectively.
  2. Traverse array arr and do the following:
    1. Add the current element to sum
    2. Compare the current element to M to calculate the maximum element.
  3. Store the sum of permutation from 1 to M in a variable say, sum1, using the formula:
Sum of elements from 1 to X= X*(X+1)/2
  1. Calculate the answer as the difference between sum and sum1 divided by the number of extra characters i.e. (sum-sum1)/(N-M).

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the repeating character in a given
// permutation
int repeatingElement(int arr[], int N)
{
    // variables to store maximum element and sum of the
    // array respectively.
    int M = 0, sum = 0;
    for (int i = 0; i < N; i++) {
 
        // calculate sum of array
        sum += arr[i];
 
        // calculate maximum element in the array
        M = max(M, arr[i]);
    }
 
    // calculating sum of permutation
    int sum1 = M * (M + 1) / 2;
 
    // calculate required answer
    int ans = (sum - sum1) / (N - M);
    return ans;
}
// Driver code
int main()
{
    // Input
    int arr[] = { 2, 6, 4, 3, 1, 5, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    cout << repeatingElement(arr, N) << endl;
    return 0;
}


Java




// Java Program for the above approach
import java.io.*;
 
class GFG
{
   
  // Function to calculate the repeating character in a given
  // permutation
  public static int repeatingElement(int arr[], int N)
  {
     
    // variables to store maximum element and sum of the
    // array respectively.
    int M = 0, sum = 0;
    for (int i = 0; i < N; i++) {
 
      // calculate sum of array
      sum += arr[i];
 
      // calculate maximum element in the array
      M = Math.max(M, arr[i]);
    }
 
    // calculating sum of permutation
    int sum1 = M * (M + 1) / 2;
 
    // calculate required answer
    int ans = (sum - sum1) / (N - M);
    return ans;
  }
 
  // Driver code
  public static void main (String[] args)
  {
     
    // Input
    int arr[] = { 2, 6, 4, 3, 1, 5, 2 };
    int N = arr.length;
 
    // Function call
    System.out.println(repeatingElement(arr, N));
  }
}
 
// This code is contributed by lokeshpotta20


Python3




# Python 3 program for the above approach
 
# Function to calculate the repeating character in a given
# permutation
def repeatingElement(arr, N):
   
    # variables to store maximum element and sum of the
    # array respectively.
    M = 0
    sum = 0
    for i in range(N):
       
        # calculate sum of array
        sum += arr[i]
 
        # calculate maximum element in the array
        M = max(M, arr[i])
 
    # calculating sum of permutation
    sum1 = M * (M + 1) // 2
 
    # calculate required answer
    ans = (sum - sum1) // (N - M)
    return ans
 
# Driver code
if __name__ == '__main__':
   
    # Input
    arr = [2, 6, 4, 3, 1, 5, 2]
    N = len(arr)
 
    # Function call
    print(repeatingElement(arr, N))
     
    # This code is contributed by SURENDRA_GANGWAR.


C#




// C++ program for the above approach
using System;
 
// Function to calculate the repeating character in a given
// permutation
public class GFG
{
    public static int repeatingElement(int[] arr, int N)
    {
       
        // variables to store maximum element and sum of the
        // array respectively.
        int M = 0, sum = 0;
        for (int i = 0; i < N; i++) {
 
            // calculate sum of array
            sum += arr[i];
 
            // calculate maximum element in the array
            M = Math.Max(M, arr[i]);
        }
 
        // calculating sum of permutation
        int sum1 = M * (M + 1) / 2;
 
        // calculate required answer
        int ans = (sum - sum1) / (N - M);
        return ans;
    }
   
    // Driver code
    public static void Main()
    {
        // Input
        int[] arr = { 2, 6, 4, 3, 1, 5, 2 };
        int N = 7;
 
        // Function call
        Console.WriteLine(repeatingElement(arr, N));
    }
}
 
// This code is contributed by Sohom Das


Javascript




// JavaScript program for the above approach
 
        // Function to calculate the repeating character in a given
        // permutation
        function repeatingElement(arr, N)
        {
         
            // variables to store maximum element and sum of the
            // array respectively.
            let M = 0, sum = 0;
            for (let i = 0; i < N; i++) {
 
                // calculate sum of array
                sum += arr[i];
 
                // calculate maximum element in the array
                M = Math.max(M, arr[i]);
            }
 
            // calculating sum of permutation
            let sum1 = parseInt(M * (M + 1) / 2);
 
            // calculate required answer
            let ans = parseInt((sum - sum1) / (N - M));
            return ans;
        }
        // Driver code
 
        // Input
        let arr = [2, 6, 4, 3, 1, 5, 2];
        let N = arr.length;
 
        // Function call
        document.write(repeatingElement(arr, N));
 
  // This code is contributed by Potta Lokesh
    </script>


 
 

Output

2

Time Complexity: O(N)
Auxiliary Space: O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments