Friday, October 17, 2025
HomeData Modelling & AIFind the repeating and the missing number using two equations

Find the repeating and the missing number using two equations

Given an array arr[] of size N, each integer from the range [1, N] appears exactly once except A which appears twice and B which is missing. The task is to find the numbers A and B.
Examples: 
 

Input: arr[] = {1, 2, 2, 3, 4} 
Output: 
A = 2 
B = 5
Input: arr[] = {5, 3, 4, 1, 1} 
Output: 
A = 1 
B = 2 
 

 

Approach: From the sum of first N natural numbers, 
 

SumN = 1 + 2 + 3 + … + N = (N * (N + 1)) / 2 
And, let the sum of all the array elements be Sum. Now, 
SumN = Sum – A + B 
A – B = Sum – SumN …(equation 1) 
 

And from the sum of the squares of first N natural numbers, 
 

SumSqN = 12 + 22 + 32 + … + N2 = (N * (N + 1) * (2 * n + 1)) / 6 
And, let the sum of the squares of all the array elements be SumSq. Now, 
SumSq = SumSqN + A2 – B2 
SumSq – SumSqN = (A + B) * (A – B) …(equation 2) 
 

Put value of (A – B) from equation 1 in equation 2, 
SumSq – SumSqN = (A + B) * (Sum – SumN) 
A + B = (SumSq – SumSqN) / (Sum – SumN) …(equation 3) 
Solving equation 1 and equation 3 will give, 
 

B = (((SumSq – SumSqN) / (Sum – SumN)) + SumN – Sum) / 2 
And, A = Sum – SumN + B 
 

Below is the implementation of the above approach:
 

C++




//C++ implementation of the approach
 
#include <cmath>
#include<bits/stdc++.h>
#include <iostream>
 
using namespace std;
 
    // Function to print the required numbers
 void findNumbers(int arr[], int n)
    {
 
        // Sum of first n natural numbers
        int sumN = (n * (n + 1)) / 2;
 
        // Sum of squares of first n natural numbers
        int sumSqN = (n * (n + 1) * (2 * n + 1)) / 6;
 
        // To store the sum and sum of squares
        // of the array elements
        int sum = 0, sumSq = 0, i;
 
        for (i = 0; i < n; i++) {
            sum += arr[i];
            sumSq = sumSq + (pow(arr[i], 2));
        }
 
        int B = (((sumSq - sumSqN) / (sum - sumN)) + sumN - sum) / 2;
        int A = sum - sumN + B;
         cout << "A = " ;
         cout << A << endl;
         cout << "B = " ;
         cout << B << endl;
    }
 
    // Driver code
int main() {
        int arr[] = { 1, 2, 2, 3, 4 };
        int n = sizeof(arr)/sizeof(arr[0]);
        findNumbers(arr, n);
    return 0;
}


Java




// Java implementation of the approach
public class GFG {
 
    // Function to print the required numbers
    static void findNumbers(int arr[], int n)
    {
 
        // Sum of first n natural numbers
        int sumN = (n * (n + 1)) / 2;
 
        // Sum of squares of first n natural numbers
        int sumSqN = (n * (n + 1) * (2 * n + 1)) / 6;
 
        // To store the sum and sum of squares
        // of the array elements
        int sum = 0, sumSq = 0, i;
 
        for (i = 0; i < n; i++) {
            sum += arr[i];
            sumSq += Math.pow(arr[i], 2);
        }
 
        int B = (((sumSq - sumSqN) / (sum - sumN)) + sumN - sum) / 2;
        int A = sum - sumN + B;
        System.out.println("A = " + A + "\nB = " + B);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 2, 3, 4 };
        int n = arr.length;
 
        findNumbers(arr, n);
    }
}


Python3




# Python3 implementation of the approach
 
import math
# Function to print the required numbers
def findNumbers(arr, n):
     
 
        # Sum of first n natural numbers
        sumN = (n * (n + 1)) / 2;
 
        # Sum of squares of first n natural numbers
        sumSqN = (n * (n + 1) * (2 * n + 1)) / 6;
 
        # To store the sum and sum of squares
        # of the array elements
        sum = 0;
        sumSq = 0;
 
        for i in range(0,n):
            sum = sum + arr[i];
            sumSq = sumSq + (math.pow(arr[i], 2));
         
 
        B = (((sumSq - sumSqN) / (sum - sumN)) + sumN - sum) / 2;
        A = sum - sumN + B;
        print("A = ",int(A)) ;
        print("B = ",int(B));
     
 
# Driver code
 
arr = [ 1, 2, 2, 3, 4 ];
n = len(arr);
findNumbers(arr, n);
 
#This code is contributed by Shivi_Aggarwal   


C#




// C# implementation of the approach
using System;
public class GFG {
 
    // Function to print the required numbers
    static void findNumbers(int []arr, int n)
    {
 
        // Sum of first n natural numbers
        int sumN = (n * (n + 1)) / 2;
 
        // Sum of squares of first n natural numbers
        int sumSqN = (n * (n + 1) * (2 * n + 1)) / 6;
 
        // To store the sum and sum of squares
        // of the array elements
        int sum = 0, sumSq = 0, i;
 
        for (i = 0; i < n; i++) {
            sum += arr[i];
            sumSq += (int)Math.Pow(arr[i], 2);
        }
 
        int B = (((sumSq - sumSqN) / (sum - sumN)) + sumN - sum) / 2;
        int A = sum - sumN + B;
        Console.WriteLine("A = " + A + "\nB = " + B);
    }
 
    // Driver code
    public static void Main()
    {
        int []arr = { 1, 2, 2, 3, 4 };
        int n = arr.Length;
 
        findNumbers(arr, n);
    }
}
// This code is contributed by PrinciRaj1992


PHP




<?php
// PHP implementation of the approach
 
// Function to print the required numbers
function findNumbers($arr, $n)
{
 
    // Sum of first n natural numbers
    $sumN = ($n * ($n + 1)) / 2;
 
    // Sum of squares of first n
    // natural numbers
    $sumSqN = ($n * ($n + 1) *
                (2 * $n + 1)) / 6;
 
    // To store the sum and sum of
    // squares of the array elements
    $sum = 0 ;
    $sumSq = 0 ;
 
    for ($i = 0; $i < $n; $i++)
    {
        $sum += $arr[$i];
        $sumSq += pow($arr[$i], 2);
    }
 
    $B = ((($sumSq - $sumSqN) / ($sum - $sumN)) +
                                 $sumN - $sum) / 2;
    $A = $sum - $sumN + $B;
    echo "A = ", $A, "\nB = ", $B;
}
 
// Driver code
$arr = array( 1, 2, 2, 3, 4 );
$n = sizeof($arr) ;
 
findNumbers($arr, $n);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to print the required numbers
function findNumbers(arr, n)
{
 
    // Sum of first n natural numbers
    sumN = (n * (n + 1)) / 2;
 
    // Sum of squares of first n
    // natural numbers
    sumSqN = (n * (n + 1) *
                (2 * n + 1)) / 6;
 
    // To store the sum and sum of
    // squares of the array elements
    let sum = 0 ;
    let sumSq = 0 ;
 
    for (let i = 0;i < n; i++)
    {
        sum += arr[i];
        sumSq += Math.pow(arr[i], 2);
    }
 
    B = (((sumSq - sumSqN) / (sum - sumN)) +
                                sumN - sum) / 2;
    A = sum - sumN + B;
    document.write( "A = "+ A, "<br>B = ", B);
}
 
// Driver code
let arr = [ 1, 2, 2, 3, 4 ];
n = arr.length ;
 
findNumbers(arr, n);
 
// This code is contributed
// by bobby
 
</script>


Output: 

A = 2
B = 5

 

Time Complexity: O(N), since the loop runs from 0 to (n – 1).
Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS