Friday, October 3, 2025
HomeData Modelling & AIFind the position of the given Prime Number

Find the position of the given Prime Number

Given a number N which is a prime number, the task is to find the position of the given prime number in the series of Prime Numbers.
Examples : 
 

Input: N = 11 
Output:
Explanation: 
The prime numbers are 2, 3, 5, 7, 11, 13, 17, …. 
Therefore, the position of 11 in this series is 5.
Input: N = 13 
Output:
 

 

Naive Approach: The naive approach for this problem is for the given input, compute the prime numbers which are less than that number and keep a track of the number of primes less than the given N. If the count is K, then K + 1 would be the answer. The time complexity for this approach is quadratic. 
Efficient Approach: The idea is to use the slight modification of Sieve of Eratosthenes. All the prime numbers up to the maximum value can be computed and stored in an array along with its position. Clearly, when the prime numbers are stored in an array, the index at which the number is stored is the position of the number in the series. After this precomputation, the answer can be calculated in constant time. 
Below is the implementation of the above approach:
 

C++




// C++ program to find the position
// of the given prime number
 
#include <bits/stdc++.h>
#define limit 10000000
using namespace std;
int position[limit + 1];
 
// Function to precompute the position
// of every prime number using Sieve
void sieve()
{
    // 0 and 1 are not prime numbers
    position[0] = -1, position[1] = -1;
 
    // Variable to store the position
    int pos = 0;
    for (int i = 2; i <= limit; i++) {
        if (position[i] == 0) {
 
            // Incrementing the position for
            // every prime number
            position[i] = ++pos;
            for (int j = i * 2; j <= limit; j += i)
                position[j] = -1;
        }
    }
}
 
// Driver code
int main()
{
    sieve();
 
    int n = 11;
    cout << position[n];
    return 0;
}


Java




// Java program to find the position
// of the given prime number
class GFG{   
     
static final int limit = 10000000;
static int []position = new int[limit + 1];
  
// Function to precompute the position
// of every prime number using Sieve
static void sieve()
{
    // 0 and 1 are not prime numbers
    position[0] = -1;
    position[1] = -1;
  
    // Variable to store the position
    int pos = 0;
    for (int i = 2; i <= limit; i++) {
        if (position[i] == 0) {
  
            // Incrementing the position for
            // every prime number
            position[i] = ++pos;
            for (int j = i * 2; j <= limit; j += i)
                position[j] = -1;
        }
    }
}
  
// Driver code
public static void main(String[] args)
{
    sieve();
  
    int n = 11;
    System.out.print(position[n]);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program to find the position
# of the given prime number
limit = 1000000
position = [0]*(limit + 1)
  
# Function to precompute the position
# of every prime number using Sieve
def sieve():
 
    # 0 and 1 are not prime numbers
    position[0] = -1
    position[1] = -1
  
    # Variable to store the position
    pos = 0
    for i in range(2, limit + 1):
        if (position[i] == 0):
  
            # Incrementing the position for
            # every prime number
            pos += 1
            position[i] = pos
            for j in range( i * 2, limit + 1 ,i):
                position[j] = -1
  
# Driver code
if __name__ == "__main__":
    sieve()
  
    n = 11
    print(position[n])
     
# This code is contributed by chitranayal


C#




// C# program to find the position
// of the given prime number
using System;
 
class GFG{   
      
static readonly int limit = 1000000;
static int []position = new int[limit + 1];
   
// Function to precompute the position
// of every prime number using Sieve
static void sieve()
{
    // 0 and 1 are not prime numbers
    position[0] = -1;
    position[1] = -1;
   
    // Variable to store the position
    int pos = 0;
    for (int i = 2; i <= limit; i++) {
        if (position[i] == 0) {
   
            // Incrementing the position for
            // every prime number
            position[i] = ++pos;
            for (int j = i * 2; j <= limit; j += i)
                position[j] = -1;
        }
    }
}
   
// Driver code
public static void Main(String[] args)
{
    sieve();
   
    int n = 11;
    Console.Write(position[n]);
}
}
  
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript program to find the position
// of the given prime number
var limit = 10000000
var position = Array(limit+1).fill(0);
 
// Function to precompute the position
// of every prime number using Sieve
function sieve()
{
 
    // 0 and 1 are not prime numbers
    position[0] = -1, position[1] = -1;
 
    // Variable to store the position
    var pos = 0;
    for (var i = 2; i <= limit; i++)
    {
        if (position[i] == 0)
        {
 
            // Incrementing the position for
            // every prime number
            position[i] = ++pos;
            for (var j = i * 2; j <= limit; j += i)
                position[j] = -1;
        }
    }
}
 
// Driver code
sieve();
var n = 11;
document.write( position[n]);
 
// This code is contributed by noob2000.
</script>


Output: 

5

 

Time Complexity: O(limit2)

Auxiliary Space: O(limit)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32331 POSTS0 COMMENTS
Milvus
85 POSTS0 COMMENTS
Nango Kala
6703 POSTS0 COMMENTS
Nicole Veronica
11868 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11929 POSTS0 COMMENTS
Shaida Kate Naidoo
6818 POSTS0 COMMENTS
Ted Musemwa
7080 POSTS0 COMMENTS
Thapelo Manthata
6775 POSTS0 COMMENTS
Umr Jansen
6776 POSTS0 COMMENTS