Given the Manhattan distances of three coordinates on a 2-D plane, the task is to find the original coordinates. Print any solution if multiple solutions are possible else print -1.
Input: d1 = 3, d2 = 4, d3 = 5
Output: (0, 0), (3, 0) and (1, 3)
Manhattan distance between (0, 0) to (3, 0) is 3,
(3, 0) to (1, 3) is 5 and (0, 0) to (1, 3) is 4
Input: d1 = 5, d2 = 10, d3 = 12
Output: -1
Approach: Let’s analyze when no solution exists. First the triangle inequality must hold true i.e. the largest distance should not exceed the sum of other two. Second, sum of all Manhattan distances should be even.
Here’s why, if we have three points and their x-coordinates are x1, x2 and x3 such that x1 < x2 < x3. They will contribute to the sum (x2 – x1) + (x3 – x1) + (x3 – x2) = 2 * (x3 – x1). Same logic applied for y-coordinates.
In all the other cases, we have a solution. Let d1, d2 and d3 be the given Manhattan distances. Fix two points as (0, 0) and (d1, 0). Now since two points are fixed, we can easily find the third point as x3 = (d1 + d2 – d3) / 2 and y3 = (d2 – x3).
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to find the original coordinated void solve( int d1, int d2, int d3) { // Maximum of the given distances int maxx = max(d1, max(d2, d3)); // Sum of the given distances int sum = (d1 + d2 + d3); // Conditions when the // solution doesn't exist if (2 * maxx > sum or sum % 2 == 1) { cout << "-1" ; return ; } // First coordinate int x1 = 0, y1 = 0; // Second coordinate int x2 = d1, y2 = 0; // Third coordinate int x3 = (d1 + d2 - d3) / 2; int y3 = (d2 + d3 - d1) / 2; cout << "(" << x1 << ", " << y1 << "), (" << x2 << ", " << y2 << ") and (" << x3 << ", " << y3 << ")" ; } // Driver code int main() { int d1 = 3, d2 = 4, d3 = 5; solve(d1, d2, d3); return 0; } |
Java
// Java implementation of the approach import java .io.*; class GFG { // Function to find the original coordinated static void solve( int d1, int d2, int d3) { // Maximum of the given distances int maxx = Math.max(d1, Math.max(d2, d3)); // Sum of the given distances int sum = (d1 + d2 + d3); // Conditions when the // solution doesn't exist if ( 2 * maxx > sum || sum % 2 == 1 ) { System.out.print( "-1" ); return ; } // First coordinate int x1 = 0 , y1 = 0 ; // Second coordinate int x2 = d1, y2 = 0 ; // Third coordinate int x3 = (d1 + d2 - d3) / 2 ; int y3 = (d2 + d3 - d1) / 2 ; System.out.print( "(" +x1+ ", " +y1+ "), (" +x2+ ", " +y2+ ") and (" +x3+ ", " +y3+ ")" ); } // Driver code public static void main(String[] args) { int d1 = 3 , d2 = 4 , d3 = 5 ; solve(d1, d2, d3); } } // This code is contributed by anuj_67.. |
Python3
# Python implementation of the approach
import math
# Function to find the original coordinated
def solve(d1, d2, d3):
# Maximum of the given distances
maxx = max(d1, d2, d3)
# Sum of the given distances
sum = (d1 + d2 + d3)
# Conditions when the
# solution doesn't exist
if 2 * maxx > sum or sum % 2 == 1:
print(-1)
return
# First coordinate
x1 = 0
y1 = 0
# Second coordinate
x2 = d1
y2 = 0
# Third coordinate
x3 = math.floor((d1 + d2 - d3) / 2)
y3 = math.floor((d2 + d3 - d1) / 2)
print(f"( {x1}, {y1}), ({x2}, {y2}) and ({x3}, {y3})")
# Driver code
d1 = 3
d2 = 4
d3 = 5
solve(d1, d2, d3)
# The code is contributed by Gautam goel (gautamgoel962)
C#
// C# implementation of the approach using System; class GFG { // Function to find the original coordinated static void solve( int d1, int d2, int d3) { // Maximum of the given distances int maxx = Math.Max(d1, Math.Max(d2, d3)); // Sum of the given distances int sum = (d1 + d2 + d3); // Conditions when the // solution doesn't exist if (2 * maxx > sum || sum % 2 == 1) { Console.WriteLine( "-1" ); return ; } // First coordinate int x1 = 0, y1 = 0; // Second coordinate int x2 = d1, y2 = 0; // Third coordinate int x3 = (d1 + d2 - d3) / 2; int y3 = (d2 + d3 - d1) / 2; Console.WriteLine( "(" +x1+ ", " +y1+ "), (" +x2+ ", " +y2+ ") and (" +x3+ ", " +y3+ ")" ); } // Driver code static void Main() { int d1 = 3, d2 = 4, d3 = 5; solve(d1, d2, d3); } } // This code is contributed by mits |
Javascript
<script> // Javascript implementation of the approach // Function to find the original coordinated function solve(d1, d2, d3) { // Maximum of the given distances let maxx = Math.max(d1, Math.max(d2, d3)); // Sum of the given distances let sum = (d1 + d2 + d3); // Conditions when the // solution doesn't exist if (2 * maxx > sum || sum % 2 == 1) { document.write( "-1" ); return ; } // First coordinate let x1 = 0, y1 = 0; // Second coordinate let x2 = d1, y2 = 0; // Third coordinate let x3 = parseInt((d1 + d2 - d3) / 2); let y3 = parseInt((d2 + d3 - d1) / 2); document.write( "(" + x1 + ", " + y1 + "), (" + x2 + ", " + y2 + ") and (" + x3 + ", " + y3 + ")" ); } // Driver code let d1 = 3, d2 = 4, d3 = 5; solve(d1, d2, d3); </script> |
(0, 0), (3, 0) and (1, 3)
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!